Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3-cosh(x)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3−cosh(x)=0

Solution

x=ln(3−22​),x=ln(3+22​)
+1
Degrees
x=−100.99797…∘,x=100.99797…∘
Solution steps
3−cosh(x)=0
Rewrite using trig identities
3−cosh(x)=0
Use the Hyperbolic identity: cosh(x)=2ex+e−x​3−2ex+e−x​=0
3−2ex+e−x​=0
3−2ex+e−x​=0:x=ln(3−22​),x=ln(3+22​)
3−2ex+e−x​=0
Multiply both sides by 23⋅2−2ex+e−x​⋅2=0⋅2
Simplify6−(ex+e−x)=0
Add (ex+e−x) to both sides6−(ex+e−x)+ex+e−x=0+ex+e−x
Simplify6−(ex+e−x)+ex+e−x=ex+e−x
Apply exponent rules
6−(ex+e−x)+ex+e−x=ex+e−x
Apply exponent rule: abc=(ab)ce−x=(ex)−16−(ex+(ex)−1)+ex+(ex)−1=ex+(ex)−1
6−(ex+(ex)−1)+ex+(ex)−1=ex+(ex)−1
Rewrite the equation with ex=u6−(u+(u)−1)+u+(u)−1=u+(u)−1
Solve 6−(u+u−1)+u+u−1=u+u−1:u=3−22​,u=3+22​
6−(u+u−1)+u+u−1=u+u−1
Refine6−(u+u1​)+u+u1​=u+u1​
Subtract u+u1​ from both sides6−(u+u1​)+u+u1​−(u+u1​)=u+u1​−(u+u1​)
Simplify6−(u+u1​)=0
Simplify −(u+u1​):−u−u1​
−(u+u1​)
Distribute parentheses=−(u)−(u1​)
Apply minus-plus rules+(−a)=−a=−u−u1​
6−u−u1​=0
Multiply both sides by u
6−u−u1​=0
Multiply both sides by u6u−uu−u1​u=0⋅u
Simplify
6u−uu−u1​u=0⋅u
Simplify −uu:−u2
−uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=−u1+1
Add the numbers: 1+1=2=−u2
Simplify −u1​u:−1
−u1​u
Multiply fractions: a⋅cb​=ca⋅b​=−u1⋅u​
Cancel the common factor: u=−1
Simplify 0⋅u:0
0⋅u
Apply rule 0⋅a=0=0
6u−u2−1=0
6u−u2−1=0
6u−u2−1=0
Solve 6u−u2−1=0:u=3−22​,u=3+22​
6u−u2−1=0
Write in the standard form ax2+bx+c=0−u2+6u−1=0
Solve with the quadratic formula
−u2+6u−1=0
Quadratic Equation Formula:
For a=−1,b=6,c=−1u1,2​=2(−1)−6±62−4(−1)(−1)​​
u1,2​=2(−1)−6±62−4(−1)(−1)​​
62−4(−1)(−1)​=42​
62−4(−1)(−1)​
Apply rule −(−a)=a=62−4⋅1⋅1​
Multiply the numbers: 4⋅1⋅1=4=62−4​
62=36=36−4​
Subtract the numbers: 36−4=32=32​
Prime factorization of 32:25
32
32divides by 232=16⋅2=2⋅16
16divides by 216=8⋅2=2⋅2⋅8
8divides by 28=4⋅2=2⋅2⋅2⋅4
4divides by 24=2⋅2=2⋅2⋅2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2⋅2⋅2
=25
=25​
Apply exponent rule: ab+c=ab⋅ac=24⋅2​
Apply radical rule: =2​24​
Apply radical rule: 24​=224​=22=222​
Refine=42​
u1,2​=2(−1)−6±42​​
Separate the solutionsu1​=2(−1)−6+42​​,u2​=2(−1)−6−42​​
u=2(−1)−6+42​​:3−22​
2(−1)−6+42​​
Remove parentheses: (−a)=−a=−2⋅1−6+42​​
Multiply the numbers: 2⋅1=2=−2−6+42​​
Apply the fraction rule: −b−a​=ba​−6+42​=−(6−42​)=26−42​​
Factor 6−42​:2(3−22​)
6−42​
Rewrite as=2⋅3−2⋅22​
Factor out common term 2=2(3−22​)
=22(3−22​)​
Divide the numbers: 22​=1=3−22​
u=2(−1)−6−42​​:3+22​
2(−1)−6−42​​
Remove parentheses: (−a)=−a=−2⋅1−6−42​​
Multiply the numbers: 2⋅1=2=−2−6−42​​
Apply the fraction rule: −b−a​=ba​−6−42​=−(6+42​)=26+42​​
Factor 6+42​:2(3+22​)
6+42​
Rewrite as=2⋅3+2⋅22​
Factor out common term 2=2(3+22​)
=22(3+22​)​
Divide the numbers: 22​=1=3+22​
The solutions to the quadratic equation are:u=3−22​,u=3+22​
u=3−22​,u=3+22​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of 6−(u+u−1)+u+u−1 and compare to zero
u=0
Take the denominator(s) of u+u−1 and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=3−22​,u=3+22​
u=3−22​,u=3+22​
Substitute back u=ex,solve for x
Solve ex=3−22​:x=ln(3−22​)
ex=3−22​
Apply exponent rules
ex=3−22​
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(3−22​)
Apply log rule: ln(ea)=aln(ex)=xx=ln(3−22​)
x=ln(3−22​)
Solve ex=3+22​:x=ln(3+22​)
ex=3+22​
Apply exponent rules
ex=3+22​
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(3+22​)
Apply log rule: ln(ea)=aln(ex)=xx=ln(3+22​)
x=ln(3+22​)
x=ln(3−22​),x=ln(3+22​)
x=ln(3−22​),x=ln(3+22​)

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

1(sin(x)-0.3pi)+2=08-32cos^2(t)=0tan(x)= 12/92cos^2(x)-cos(x)+1=0cos(3t)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for 3-cosh(x)=0 ?

    The general solution for 3-cosh(x)=0 is x=ln(3-2sqrt(2)),x=ln(3+2sqrt(2))
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024