Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(tan(θ)cot(θ))/(sec^2(θ))=cot(θ)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sec2(θ)tan(θ)cot(θ)​=cot(θ)

Solution

NoSolutionforθ∈R
Solution steps
sec2(θ)tan(θ)cot(θ)​=cot(θ)
Subtract cot(θ) from both sidessec2(θ)tan(θ)cot(θ)​−cot(θ)=0
Simplify sec2(θ)tan(θ)cot(θ)​−cot(θ):sec2(θ)tan(θ)cot(θ)−sec2(θ)cot(θ)​
sec2(θ)tan(θ)cot(θ)​−cot(θ)
Convert element to fraction: cot(θ)=sec2(θ)cot(θ)sec2(θ)​=sec2(θ)tan(θ)cot(θ)​−sec2(θ)cot(θ)sec2(θ)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sec2(θ)tan(θ)cot(θ)−cot(θ)sec2(θ)​
sec2(θ)tan(θ)cot(θ)−sec2(θ)cot(θ)​=0
g(x)f(x)​=0⇒f(x)=0tan(θ)cot(θ)−sec2(θ)cot(θ)=0
Factor tan(θ)cot(θ)−sec2(θ)cot(θ):cot(θ)(tan(θ)−sec2(θ))
tan(θ)cot(θ)−sec2(θ)cot(θ)
Factor out common term cot(θ)=cot(θ)(tan(θ)−sec2(θ))
cot(θ)(tan(θ)−sec2(θ))=0
Solving each part separatelycot(θ)=0ortan(θ)−sec2(θ)=0
cot(θ)=0:θ=2π​+πn
cot(θ)=0
General solutions for cot(θ)=0
cot(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cot(x)∓∞3​133​​0−33​​−1−3​​​
θ=2π​+πn
θ=2π​+πn
tan(θ)−sec2(θ)=0:No Solution
tan(θ)−sec2(θ)=0
Rewrite using trig identities
−sec2(θ)+tan(θ)
Use the Pythagorean identity: sec2(x)=tan2(x)+1=−(tan2(θ)+1)+tan(θ)
−(tan2(θ)+1):−tan2(θ)−1
−(tan2(θ)+1)
Distribute parentheses=−(tan2(θ))−(1)
Apply minus-plus rules+(−a)=−a=−tan2(θ)−1
=−tan2(θ)−1+tan(θ)
−1+tan(θ)−tan2(θ)=0
Solve by substitution
−1+tan(θ)−tan2(θ)=0
Let: tan(θ)=u−1+u−u2=0
−1+u−u2=0:u=21​−i23​​,u=21​+i23​​
−1+u−u2=0
Write in the standard form ax2+bx+c=0−u2+u−1=0
Solve with the quadratic formula
−u2+u−1=0
Quadratic Equation Formula:
For a=−1,b=1,c=−1u1,2​=2(−1)−1±12−4(−1)(−1)​​
u1,2​=2(−1)−1±12−4(−1)(−1)​​
Simplify 12−4(−1)(−1)​:3​i
12−4(−1)(−1)​
Apply rule 1a=112=1=1−4(−1)(−1)​
Apply rule −(−a)=a=1−4⋅1⋅1​
Multiply the numbers: 4⋅1⋅1=4=1−4​
Subtract the numbers: 1−4=−3=−3​
Apply radical rule: −a​=−1​a​−3​=−1​3​=−1​3​
Apply imaginary number rule: −1​=i=3​i
u1,2​=2(−1)−1±3​i​
Separate the solutionsu1​=2(−1)−1+3​i​,u2​=2(−1)−1−3​i​
u=2(−1)−1+3​i​:21​−i23​​
2(−1)−1+3​i​
Remove parentheses: (−a)=−a=−2⋅1−1+3​i​
Multiply the numbers: 2⋅1=2=−2−1+3​i​
Apply the fraction rule: −ba​=−ba​=−2−1+3​i​
Rewrite −2−1+3​i​ in standard complex form: 21​−23​​i
−2−1+3​i​
Apply the fraction rule: ca±b​=ca​±cb​2−1+3​i​=−(−21​)−(23​i​)=−(−21​)−(23​i​)
Remove parentheses: (a)=a,−(−a)=a=21​−23​i​
=21​−23​​i
u=2(−1)−1−3​i​:21​+i23​​
2(−1)−1−3​i​
Remove parentheses: (−a)=−a=−2⋅1−1−3​i​
Multiply the numbers: 2⋅1=2=−2−1−3​i​
Apply the fraction rule: −ba​=−ba​=−2−1−3​i​
Rewrite −2−1−3​i​ in standard complex form: 21​+23​​i
−2−1−3​i​
Apply the fraction rule: ca±b​=ca​±cb​2−1−3​i​=−(−21​)−(−23​i​)=−(−21​)−(−23​i​)
Apply rule −(−a)=a=21​+23​i​
=21​+23​​i
The solutions to the quadratic equation are:u=21​−i23​​,u=21​+i23​​
Substitute back u=tan(θ)tan(θ)=21​−i23​​,tan(θ)=21​+i23​​
tan(θ)=21​−i23​​,tan(θ)=21​+i23​​
tan(θ)=21​−i23​​:No Solution
tan(θ)=21​−i23​​
NoSolution
tan(θ)=21​+i23​​:No Solution
tan(θ)=21​+i23​​
NoSolution
Combine all the solutionsNoSolution
Combine all the solutionsθ=2π​+πn
Since the equation is undefined for:2π​+πnNoSolutionforθ∈R

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(y)=(sqrt(3))/29sin^2(x)+3cos(x)-7=03sec(2x+3)=4sin(2x)+(sqrt(2))/2 =0cos(θ)-sin(θ)=sqrt(2)

Frequently Asked Questions (FAQ)

  • What is the general solution for (tan(θ)cot(θ))/(sec^2(θ))=cot(θ) ?

    The general solution for (tan(θ)cot(θ))/(sec^2(θ))=cot(θ) is No Solution for θ\in\mathbb{R}
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024