Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sinh^2(x)=2sinh(x)cosh(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sinh2(x)=2sinh(x)cosh(x)

Solution

x=0
+1
Degrees
x=0∘
Solution steps
sinh2(x)=2sinh(x)cosh(x)
Rewrite using trig identities
sinh2(x)=2sinh(x)cosh(x)
Use the Hyperbolic identity: sinh(x)=2ex−e−x​(2ex−e−x​)2=2sinh(x)cosh(x)
Use the Hyperbolic identity: sinh(x)=2ex−e−x​(2ex−e−x​)2=2⋅2ex−e−x​cosh(x)
Use the Hyperbolic identity: cosh(x)=2ex+e−x​(2ex−e−x​)2=2⋅2ex−e−x​⋅2ex+e−x​
(2ex−e−x​)2=2⋅2ex−e−x​⋅2ex+e−x​
(2ex−e−x​)2=2⋅2ex−e−x​⋅2ex+e−x​:x=0
(2ex−e−x​)2=2⋅2ex−e−x​⋅2ex+e−x​
Apply exponent rules
(2ex−e−x​)2=2⋅2ex−e−x​⋅2ex+e−x​
Apply exponent rule: abc=(ab)ce−x=(ex)−1(2ex−(ex)−1​)2=2⋅2ex−(ex)−1​⋅2ex+(ex)−1​
(2ex−(ex)−1​)2=2⋅2ex−(ex)−1​⋅2ex+(ex)−1​
Rewrite the equation with ex=u(2u−(u)−1​)2=2⋅2u−(u)−1​⋅2u+(u)−1​
Solve (2u−u−1​)2=2⋅2u−u−1​⋅2u+u−1​:u=−1,u=1
(2u−u−1​)2=2⋅2u−u−1​⋅2u+u−1​
Refine4u2(u2−1)2​=2u2(u2−1)(u2+1)​
Cross multiply
4u2(u2−1)2​=2u2(u2−1)(u2+1)​
Apply fraction cross multiply: if ba​=dc​ then a⋅d=b⋅c(u2−1)2⋅2u2=4u2(u2−1)(u2+1)
(u2−1)2⋅2u2=4u2(u2−1)(u2+1)
Solve (u2−1)2⋅2u2=4u2(u2−1)(u2+1):u=0,u=−1,u=1
(u2−1)2⋅2u2=4u2(u2−1)(u2+1)
Move 4u2(u2−1)(u2+1)to the left side
(u2−1)2⋅2u2=4u2(u2−1)(u2+1)
Subtract 4u2(u2−1)(u2+1) from both sides(u2−1)2⋅2u2−4u2(u2−1)(u2+1)=4u2(u2−1)(u2+1)−4u2(u2−1)(u2+1)
Simplify(u2−1)2⋅2u2−4u2(u2−1)(u2+1)=0
(u2−1)2⋅2u2−4u2(u2−1)(u2+1)=0
Factor (u2−1)2⋅2u2−4u2(u2−1)(u2+1):−2u2(u+1)(u−1)(u2+3)
(u2−1)2⋅2u2−4u2(u2−1)(u2+1)
Factor (u2−1)2:(u+1)2(u−1)2
Factor u2−1:(u+1)(u−1)
u2−1
Rewrite 1 as 12=u2−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)u2−12=(u+1)(u−1)=(u+1)(u−1)
=((u+1)(u−1))2
Apply exponent rule: (ab)n=anbn=(u+1)2(u−1)2
Factor u2−1:(u+1)(u−1)
u2−1
Rewrite 1 as 12=u2−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)u2−12=(u+1)(u−1)=(u+1)(u−1)
=2u2(u+1)2(u−1)2−4u2(u+1)(u−1)(u2+1)
Factor out common term 2u2(u+1)(u−1)=2u2(u+1)(u−1)((u+1)(u−1)−2(u2+1))
Expand (u+1)(u−1)−2(u2+1):−u2−3
(u+1)(u−1)−2(u2+1)
Expand (u+1)(u−1):u2−1
(u+1)(u−1)
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=u,b=1=u2−12
Apply rule 1a=112=1=u2−1
=u2−1−2(u2+1)
Expand −2(u2+1):−2u2−2
−2(u2+1)
Apply the distributive law: a(b+c)=ab+aca=−2,b=u2,c=1=−2u2+(−2)⋅1
Apply minus-plus rules+(−a)=−a=−2u2−2⋅1
Multiply the numbers: 2⋅1=2=−2u2−2
=u2−1−2u2−2
Simplify u2−1−2u2−2:−u2−3
u2−1−2u2−2
Group like terms=u2−2u2−1−2
Add similar elements: u2−2u2=−u2=−u2−1−2
Subtract the numbers: −1−2=−3=−u2−3
=−u2−3
=2u2(u+1)(u−1)(−u2−3)
Factor −u2−3:−(u2+3)
−u2−3
Factor out common term −1=−(u2+3)
=−2u2(u+1)(u−1)(u2+3)
−2u2(u+1)(u−1)(u2+3)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0u=0oru+1=0oru−1=0oru2+3=0
Solve u+1=0:u=−1
u+1=0
Move 1to the right side
u+1=0
Subtract 1 from both sidesu+1−1=0−1
Simplifyu=−1
u=−1
Solve u−1=0:u=1
u−1=0
Move 1to the right side
u−1=0
Add 1 to both sidesu−1+1=0+1
Simplifyu=1
u=1
Solve u2+3=0:No Solution for u∈R
u2+3=0
Move 3to the right side
u2+3=0
Subtract 3 from both sidesu2+3−3=0−3
Simplifyu2=−3
u2=−3
x2 cannot be negative for x∈RNoSolutionforu∈R
The solutions areu=0,u=−1,u=1
u=0,u=−1,u=1
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of (2u−u−1​)2 and compare to zero
u=0
Take the denominator(s) of 22u−u−1​2u+u−1​ and compare to zero
u=0
The following points are undefinedu=0
Since the equation is undefined for:0
u=−1,u=1
u=−1,u=1
Substitute back u=ex,solve for x
Solve ex=−1:No Solution for x∈R
ex=−1
af(x) cannot be zero or negative for x∈RNoSolutionforx∈R
Solve ex=1:x=0
ex=1
Apply exponent rules
ex=1
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(1)
Apply log rule: ln(ea)=aln(ex)=xx=ln(1)
Simplify ln(1):0
ln(1)
Apply log rule: loga​(1)=0=0
x=0
x=0
x=0
x=0

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(3x)cot(x+40)=12sin(x)cos(x)+sqrt(2)sin(x)=04sin(θ)=2sqrt(3)sin(x)=2sin(x)sin(2θ)=sqrt(2)sin(θ)

Frequently Asked Questions (FAQ)

  • What is the general solution for sinh^2(x)=2sinh(x)cosh(x) ?

    The general solution for sinh^2(x)=2sinh(x)cosh(x) is x=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024