Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

4cos^4(x)-1=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

4cos4(x)−1=0

Solution

x=0.78539…+2πn,x=2π−0.78539…+2πn,x=2.35619…+2πn,x=−2.35619…+2πn
+1
Degrees
x=45∘+360∘n,x=315∘+360∘n,x=135∘+360∘n,x=−135∘+360∘n
Solution steps
4cos4(x)−1=0
Solve by substitution
4cos4(x)−1=0
Let: cos(x)=u4u4−1=0
4u4−1=0:u=21​​,u=−21​​,u=i21​​,u=−i21​​
4u4−1=0
Move 1to the right side
4u4−1=0
Add 1 to both sides4u4−1+1=0+1
Simplify4u4=1
4u4=1
Divide both sides by 4
4u4=1
Divide both sides by 444u4​=41​
Simplifyu4=41​
u4=41​
Rewrite the equation with v=u2 and v2=u4v2=41​
Solve v2=41​:v=41​​,v=−41​​
v2=41​
For (g(x))2=f(a) the solutions are g(x)=f(a)​,−f(a)​
v=41​​,v=−41​​
v=41​​,v=−41​​
Substitute back v=u2,solve for u
Solve u2=41​​:u=21​​,u=−21​​
u2=41​​
Simplify 41​​:21​
41​​
Apply radical rule: assuming a≥0,b≥0=4​1​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=21​​
Apply rule 1​=1=21​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=21​​,u=−21​​
Solve u2=−41​​:u=i21​​,u=−i21​​
u2=−41​​
Simplify −41​​:−21​
−41​​
Simplify 41​​:21​​
41​​
Apply radical rule: assuming a≥0,b≥0=4​1​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=21​​
=−21​​
Apply rule 1​=1=−21​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=−21​​,u=−−21​​
Simplify −21​​:i21​​
−21​​
Apply radical rule: −a​=−1​a​−21​​=−1​21​​=−1​21​​
Apply imaginary number rule: −1​=i=i21​​
Simplify −−21​​:−i21​​
−−21​​
Simplify −21​​:i21​​
−21​​
Apply radical rule: −a​=−1​a​−21​​=−1​21​​=−1​21​​
Apply imaginary number rule: −1​=i=i21​​
=−i21​​
u=i21​​,u=−i21​​
The solutions are
u=21​​,u=−21​​,u=i21​​,u=−i21​​
Substitute back u=cos(x)cos(x)=21​​,cos(x)=−21​​,cos(x)=i21​​,cos(x)=−i21​​
cos(x)=21​​,cos(x)=−21​​,cos(x)=i21​​,cos(x)=−i21​​
cos(x)=21​​:x=arccos(21​​)+2πn,x=2π−arccos(21​​)+2πn
cos(x)=21​​
Apply trig inverse properties
cos(x)=21​​
General solutions for cos(x)=21​​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(21​​)+2πn,x=2π−arccos(21​​)+2πn
x=arccos(21​​)+2πn,x=2π−arccos(21​​)+2πn
cos(x)=−21​​:x=arccos(−21​​)+2πn,x=−arccos(−21​​)+2πn
cos(x)=−21​​
Apply trig inverse properties
cos(x)=−21​​
General solutions for cos(x)=−21​​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−21​​)+2πn,x=−arccos(−21​​)+2πn
x=arccos(−21​​)+2πn,x=−arccos(−21​​)+2πn
cos(x)=i21​​:No Solution
cos(x)=i21​​
NoSolution
cos(x)=−i21​​:No Solution
cos(x)=−i21​​
NoSolution
Combine all the solutionsx=arccos(21​​)+2πn,x=2π−arccos(21​​)+2πn,x=arccos(−21​​)+2πn,x=−arccos(−21​​)+2πn
Show solutions in decimal formx=0.78539…+2πn,x=2π−0.78539…+2πn,x=2.35619…+2πn,x=−2.35619…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

arccos(2x)-arccos(x)= pi/3cos(2θ)= 1/2 ,0<= θ<= 2pitan(x-pi/2)=(sqrt(3))/32=2cos(3x)cos(2x)=sqrt(3)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024