Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

6sin(x)-5cos(x)=7

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

6sin(x)−5cos(x)=7

Solution

x=2.72507…+2πn,x=1.80599…+2πn
+1
Degrees
x=156.13507…∘+360∘n,x=103.47606…∘+360∘n
Solution steps
6sin(x)−5cos(x)=7
Add 5cos(x) to both sides6sin(x)=7+5cos(x)
Square both sides(6sin(x))2=(7+5cos(x))2
Subtract (7+5cos(x))2 from both sides36sin2(x)−49−70cos(x)−25cos2(x)=0
Rewrite using trig identities
−49−25cos2(x)+36sin2(x)−70cos(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−49−25cos2(x)+36(1−cos2(x))−70cos(x)
Simplify −49−25cos2(x)+36(1−cos2(x))−70cos(x):−61cos2(x)−70cos(x)−13
−49−25cos2(x)+36(1−cos2(x))−70cos(x)
Expand 36(1−cos2(x)):36−36cos2(x)
36(1−cos2(x))
Apply the distributive law: a(b−c)=ab−aca=36,b=1,c=cos2(x)=36⋅1−36cos2(x)
Multiply the numbers: 36⋅1=36=36−36cos2(x)
=−49−25cos2(x)+36−36cos2(x)−70cos(x)
Simplify −49−25cos2(x)+36−36cos2(x)−70cos(x):−61cos2(x)−70cos(x)−13
−49−25cos2(x)+36−36cos2(x)−70cos(x)
Group like terms=−25cos2(x)−36cos2(x)−70cos(x)−49+36
Add similar elements: −25cos2(x)−36cos2(x)=−61cos2(x)=−61cos2(x)−70cos(x)−49+36
Add/Subtract the numbers: −49+36=−13=−61cos2(x)−70cos(x)−13
=−61cos2(x)−70cos(x)−13
=−61cos2(x)−70cos(x)−13
−13−61cos2(x)−70cos(x)=0
Solve by substitution
−13−61cos2(x)−70cos(x)=0
Let: cos(x)=u−13−61u2−70u=0
−13−61u2−70u=0:u=−6135+123​​,u=−6135−123​​
−13−61u2−70u=0
Write in the standard form ax2+bx+c=0−61u2−70u−13=0
Solve with the quadratic formula
−61u2−70u−13=0
Quadratic Equation Formula:
For a=−61,b=−70,c=−13u1,2​=2(−61)−(−70)±(−70)2−4(−61)(−13)​​
u1,2​=2(−61)−(−70)±(−70)2−4(−61)(−13)​​
(−70)2−4(−61)(−13)​=243​
(−70)2−4(−61)(−13)​
Apply rule −(−a)=a=(−70)2−4⋅61⋅13​
Apply exponent rule: (−a)n=an,if n is even(−70)2=702=702−4⋅61⋅13​
Multiply the numbers: 4⋅61⋅13=3172=702−3172​
702=4900=4900−3172​
Subtract the numbers: 4900−3172=1728=1728​
Prime factorization of 1728:26⋅33
1728
1728divides by 21728=864⋅2=2⋅864
864divides by 2864=432⋅2=2⋅2⋅432
432divides by 2432=216⋅2=2⋅2⋅2⋅216
216divides by 2216=108⋅2=2⋅2⋅2⋅2⋅108
108divides by 2108=54⋅2=2⋅2⋅2⋅2⋅2⋅54
54divides by 254=27⋅2=2⋅2⋅2⋅2⋅2⋅2⋅27
27divides by 327=9⋅3=2⋅2⋅2⋅2⋅2⋅2⋅3⋅9
9divides by 39=3⋅3=2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3
=26⋅33
=26⋅33​
Apply exponent rule: ab+c=ab⋅ac=26⋅32⋅3​
Apply radical rule: =3​26​32​
Apply radical rule: 26​=226​=23=233​32​
Apply radical rule: 32​=3=23⋅33​
Refine=243​
u1,2​=2(−61)−(−70)±243​​
Separate the solutionsu1​=2(−61)−(−70)+243​​,u2​=2(−61)−(−70)−243​​
u=2(−61)−(−70)+243​​:−6135+123​​
2(−61)−(−70)+243​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅6170+243​​
Multiply the numbers: 2⋅61=122=−12270+243​​
Apply the fraction rule: −ba​=−ba​=−12270+243​​
Cancel 12270+243​​:6135+123​​
12270+243​​
Factor 70+243​:2(35+123​)
70+243​
Rewrite as=2⋅35+2⋅123​
Factor out common term 2=2(35+123​)
=1222(35+123​)​
Cancel the common factor: 2=6135+123​​
=−6135+123​​
u=2(−61)−(−70)−243​​:−6135−123​​
2(−61)−(−70)−243​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅6170−243​​
Multiply the numbers: 2⋅61=122=−12270−243​​
Apply the fraction rule: −ba​=−ba​=−12270−243​​
Cancel 12270−243​​:6135−123​​
12270−243​​
Factor 70−243​:2(35−123​)
70−243​
Rewrite as=2⋅35−2⋅123​
Factor out common term 2=2(35−123​)
=1222(35−123​)​
Cancel the common factor: 2=6135−123​​
=−6135−123​​
The solutions to the quadratic equation are:u=−6135+123​​,u=−6135−123​​
Substitute back u=cos(x)cos(x)=−6135+123​​,cos(x)=−6135−123​​
cos(x)=−6135+123​​,cos(x)=−6135−123​​
cos(x)=−6135+123​​:x=arccos(−6135+123​​)+2πn,x=−arccos(−6135+123​​)+2πn
cos(x)=−6135+123​​
Apply trig inverse properties
cos(x)=−6135+123​​
General solutions for cos(x)=−6135+123​​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−6135+123​​)+2πn,x=−arccos(−6135+123​​)+2πn
x=arccos(−6135+123​​)+2πn,x=−arccos(−6135+123​​)+2πn
cos(x)=−6135−123​​:x=arccos(−6135−123​​)+2πn,x=−arccos(−6135−123​​)+2πn
cos(x)=−6135−123​​
Apply trig inverse properties
cos(x)=−6135−123​​
General solutions for cos(x)=−6135−123​​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−6135−123​​)+2πn,x=−arccos(−6135−123​​)+2πn
x=arccos(−6135−123​​)+2πn,x=−arccos(−6135−123​​)+2πn
Combine all the solutionsx=arccos(−6135+123​​)+2πn,x=−arccos(−6135+123​​)+2πn,x=arccos(−6135−123​​)+2πn,x=−arccos(−6135−123​​)+2πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into 6sin(x)−5cos(x)=7
Remove the ones that don't agree with the equation.
Check the solution arccos(−6135+123​​)+2πn:True
arccos(−6135+123​​)+2πn
Plug in n=1arccos(−6135+123​​)+2π1
For 6sin(x)−5cos(x)=7plug inx=arccos(−6135+123​​)+2π16sin(arccos(−6135+123​​)+2π1)−5cos(arccos(−6135+123​​)+2π1)=7
Refine7=7
⇒True
Check the solution −arccos(−6135+123​​)+2πn:False
−arccos(−6135+123​​)+2πn
Plug in n=1−arccos(−6135+123​​)+2π1
For 6sin(x)−5cos(x)=7plug inx=−arccos(−6135+123​​)+2π16sin(−arccos(−6135+123​​)+2π1)−5cos(−arccos(−6135+123​​)+2π1)=7
Refine2.14501…=7
⇒False
Check the solution arccos(−6135−123​​)+2πn:True
arccos(−6135−123​​)+2πn
Plug in n=1arccos(−6135−123​​)+2π1
For 6sin(x)−5cos(x)=7plug inx=arccos(−6135−123​​)+2π16sin(arccos(−6135−123​​)+2π1)−5cos(arccos(−6135−123​​)+2π1)=7
Refine7=7
⇒True
Check the solution −arccos(−6135−123​​)+2πn:False
−arccos(−6135−123​​)+2πn
Plug in n=1−arccos(−6135−123​​)+2π1
For 6sin(x)−5cos(x)=7plug inx=−arccos(−6135−123​​)+2π16sin(−arccos(−6135−123​​)+2π1)−5cos(−arccos(−6135−123​​)+2π1)=7
Refine−4.66960…=7
⇒False
x=arccos(−6135+123​​)+2πn,x=arccos(−6135−123​​)+2πn
Show solutions in decimal formx=2.72507…+2πn,x=1.80599…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

3sin^2(x)-7sin(x)=62cos^2(x)-sin^2(x)+1=0-6sin(t)+6cos(2t)=0cos^2(x)=42*sin(x)=tan(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for 6sin(x)-5cos(x)=7 ?

    The general solution for 6sin(x)-5cos(x)=7 is x=2.72507…+2pin,x=1.80599…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024