Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

[3(cos(pi/(12))+sin(pi/(12)))]^3

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

[3(cos(12π​)+sin(12π​))]3

Solution

4816​​
+1
Decimal
49.60216…
Solution steps
[3(cos(12π​)+sin(12π​))]3
=(3(cos(12π​)+sin(12π​)))3
Rewrite using trig identities:cos(12π​)=46​+2​​
cos(12π​)
Rewrite using trig identities:cos(4π​)cos(6π​)+sin(4π​)sin(6π​)
cos(12π​)
Write cos(12π​)as cos(4π​−6π​)=cos(4π​−6π​)
Use the Angle Difference identity: cos(s−t)=cos(s)cos(t)+sin(s)sin(t)=cos(4π​)cos(6π​)+sin(4π​)sin(6π​)
=cos(4π​)cos(6π​)+sin(4π​)sin(6π​)
Use the following trivial identity:cos(4π​)=22​​
cos(4π​)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
Use the following trivial identity:cos(6π​)=23​​
cos(6π​)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=23​​
Use the following trivial identity:sin(4π​)=22​​
sin(4π​)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
Use the following trivial identity:sin(6π​)=21​
sin(6π​)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=21​
=22​​⋅23​​+22​​⋅21​
Simplify 22​​⋅23​​+22​​⋅21​:46​+2​​
22​​⋅23​​+22​​⋅21​
22​​⋅23​​=46​​
22​​⋅23​​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=2⋅22​3​​
Multiply the numbers: 2⋅2=4=42​3​​
Simplify 2​3​:6​
2​3​
Apply radical rule: a​b​=a⋅b​2​3​=2⋅3​=2⋅3​
Multiply the numbers: 2⋅3=6=6​
=46​​
22​​⋅21​=42​​
22​​⋅21​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=2⋅22​⋅1​
Multiply: 2​⋅1=2​=2⋅22​​
Multiply the numbers: 2⋅2=4=42​​
=46​​+42​​
Apply rule ca​±cb​=ca±b​=46​+2​​
=46​+2​​
Rewrite using trig identities:sin(12π​)=46​−2​​
sin(12π​)
Rewrite using trig identities:sin(4π​)cos(6π​)−cos(4π​)sin(6π​)
sin(12π​)
Write sin(12π​)as sin(4π​−6π​)=sin(4π​−6π​)
Use the Angle Difference identity: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=sin(4π​)cos(6π​)−cos(4π​)sin(6π​)
=sin(4π​)cos(6π​)−cos(4π​)sin(6π​)
Use the following trivial identity:sin(4π​)=22​​
sin(4π​)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
Use the following trivial identity:cos(6π​)=23​​
cos(6π​)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=23​​
Use the following trivial identity:cos(4π​)=22​​
cos(4π​)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
Use the following trivial identity:sin(6π​)=21​
sin(6π​)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=21​
=22​​⋅23​​−22​​⋅21​
Simplify 22​​⋅23​​−22​​⋅21​:46​−2​​
22​​⋅23​​−22​​⋅21​
22​​⋅23​​=46​​
22​​⋅23​​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=2⋅22​3​​
Multiply the numbers: 2⋅2=4=42​3​​
Simplify 2​3​:6​
2​3​
Apply radical rule: a​b​=a⋅b​2​3​=2⋅3​=2⋅3​
Multiply the numbers: 2⋅3=6=6​
=46​​
22​​⋅21​=42​​
22​​⋅21​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=2⋅22​⋅1​
Multiply: 2​⋅1=2​=2⋅22​​
Multiply the numbers: 2⋅2=4=42​​
=46​​−42​​
Apply rule ca​±cb​=ca±b​=46​−2​​
=46​−2​​
=(3(46​+2​​+46​−2​​))3
Simplify (3(46​+2​​+46​−2​​))3:4816​​
(3(46​+2​​+46​−2​​))3
Combine the fractions 46​+2​​+46​−2​​:26​​
Apply rule ca​±cb​=ca±b​=46​+2​+6​−2​​
6​+2​+6​−2​=26​
6​+2​+6​−2​
Add similar elements: 2​−2​=0=6​+6​
Add similar elements: 6​+6​=26​=26​
=426​​
Cancel the common factor: 2=26​​
=(3(26​​))3
Remove parentheses: (a)=a=(3⋅26​​)3
Multiply 3⋅26​​:2​33​​
3⋅26​​
Multiply fractions: a⋅cb​=ca⋅b​=26​⋅3​
Factor 6​:2​3​
Factor 6=2⋅3=2⋅3​
Apply radical rule: =2​3​
=232​3​​
Cancel 22​3​⋅3​:2​3​⋅3​
22​3​⋅3​
Apply radical rule: 2​=221​=23⋅221​3​​
Apply exponent rule: xbxa​=xb−a1​21221​​=21−21​1​=21−21​33​​
Subtract the numbers: 1−21​=21​=221​33​​
Apply radical rule: 221​=2​=2​33​​
=2​3​⋅3​
=(2​3​⋅3​)3
Apply exponent rule: (ba​)c=bcac​=(2​)3(33​)3​
(2​)3:223​
Apply radical rule: a​=a21​=(221​)3
Apply exponent rule: (ab)c=abc=221​⋅3
21​⋅3=23​
21​⋅3
Multiply fractions: a⋅cb​=ca⋅b​=21⋅3​
Multiply the numbers: 1⋅3=3=23​
=223​
=223​(3​⋅3)3​
Apply exponent rule: (a⋅b)n=anbn(33​)3=33(3​)3=223​33(3​)3​
223​=22​
223​
223​=21+21​=21+21​
Apply exponent rule: xa+b=xaxb=21⋅221​
Refine=22​
=22​
(3​)3:323​
Apply radical rule: a​=a21​=(321​)3
Apply exponent rule: (ab)c=abc=321​⋅3
21​⋅3=23​
21​⋅3
Multiply fractions: a⋅cb​=ca⋅b​=21⋅3​
Multiply the numbers: 1⋅3=3=23​
=323​
=22​323​⋅33​
323​=33​
323​
323​=31+21​=31+21​
Apply exponent rule: xa+b=xaxb=31⋅321​
Refine=33​
=22​33⋅33​​
33​⋅33=343​
33​⋅33
Apply exponent rule: ab⋅ac=ab+c3⋅33=31+3=3​⋅31+3
Add the numbers: 1+3=4=3​⋅34
=22​343​​
34=81=22​813​​
Rationalize 22​813​​:4816​​
22​813​​
Multiply by the conjugate 2​2​​=22​2​3​⋅812​​
3​⋅812​=816​
3​⋅812​
Apply radical rule: a​b​=a⋅b​3​2​=3⋅2​=813⋅2​
Multiply the numbers: 3⋅2=6=816​
22​2​=4
22​2​
Apply exponent rule: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=21+21​+21​
Add similar elements: 21​+21​=2⋅21​=21+2⋅21​
2⋅21​=1
2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21+1
Add the numbers: 1+1=2=22
22=4=4
=4816​​
=4816​​
=4816​​

Popular Examples

pi-sin(pi)arctan(-0.75)3cos(2)ln(sec(0))e^picos(pi)

Frequently Asked Questions (FAQ)

  • What is the value of [3(cos(pi/(12))+sin(pi/(12)))]^3 ?

    The value of [3(cos(pi/(12))+sin(pi/(12)))]^3 is (81sqrt(6))/4
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024