Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sqrt(2)sin(2x)=sin(4x),0<= x<= pi

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2​sin(2x)=sin(4x),0≤x≤π

Solution

x=0,x=2π​,x=π,x=8π​,x=87π​
+1
Degrees
x=0∘,x=90∘,x=180∘,x=22.5∘,x=157.5∘
Solution steps
2​sin(2x)=sin(4x),0≤x≤π
Subtract sin(4x) from both sides2​sin(2x)−sin(4x)=0
Let: u=2x2​sin(u)−sin(2u)=0,0≤u≤2π
Rewrite using trig identities
−sin(2u)+sin(u)2​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=−2sin(u)cos(u)+2​sin(u)
sin(u)2​−2cos(u)sin(u)=0
Factor sin(u)2​−2cos(u)sin(u):sin(u)(2​−2cos(u))
sin(u)2​−2cos(u)sin(u)
Factor out common term sin(u)=sin(u)(2​−2cos(u))
sin(u)(2​−2cos(u))=0
Solving each part separatelysin(u)=0or2​−2cos(u)=0
sin(u)=0,0≤u≤2π:u=0,u=π,u=2π
sin(u)=0,0≤u≤2π
General solutions for sin(u)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
u=0+2πn,u=π+2πn
u=0+2πn,u=π+2πn
Solve u=0+2πn:u=2πn
u=0+2πn
0+2πn=2πnu=2πn
u=2πn,u=π+2πn
Solutions for the range 0≤u≤2πu=0,u=π,u=2π
2​−2cos(u)=0,0≤u≤2π:u=4π​,u=47π​
2​−2cos(u)=0,0≤u≤2π
Move 2​to the right side
2​−2cos(u)=0
Subtract 2​ from both sides2​−2cos(u)−2​=0−2​
Simplify−2cos(u)=−2​
−2cos(u)=−2​
Divide both sides by −2
−2cos(u)=−2​
Divide both sides by −2−2−2cos(u)​=−2−2​​
Simplifycos(u)=22​​
cos(u)=22​​
General solutions for cos(u)=22​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
u=4π​+2πn,u=47π​+2πn
u=4π​+2πn,u=47π​+2πn
Solutions for the range 0≤u≤2πu=4π​,u=47π​
Combine all the solutionsu=0,u=π,u=2π,u=4π​,u=47π​
Substitute back u=2x
2x=0:x=0
2x=0
Divide both sides by 2
2x=0
Divide both sides by 222x​=20​
Simplifyx=0
x=0
2x=π:x=2π​
2x=π
Divide both sides by 2
2x=π
Divide both sides by 222x​=2π​
Simplifyx=2π​
x=2π​
2x=2π:x=π
2x=2π
Divide both sides by 2
2x=2π
Divide both sides by 222x​=22π​
Simplifyx=π
x=π
2x=4π​:x=8π​
2x=4π​
Divide both sides by 2
2x=4π​
Divide both sides by 222x​=24π​​
Simplify
22x​=24π​​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 24π​​:8π​
24π​​
Apply the fraction rule: acb​​=c⋅ab​=4⋅2π​
Multiply the numbers: 4⋅2=8=8π​
x=8π​
x=8π​
x=8π​
2x=47π​:x=87π​
2x=47π​
Divide both sides by 2
2x=47π​
Divide both sides by 222x​=247π​​
Simplify
22x​=247π​​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 247π​​:87π​
247π​​
Apply the fraction rule: acb​​=c⋅ab​=4⋅27π​
Multiply the numbers: 4⋅2=8=87π​
x=87π​
x=87π​
x=87π​
x=0,x=2π​,x=π,x=8π​,x=87π​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

9sin(x)-2=4sin^2(x)-2cot(x)=csc^2(x)sin(θ)=-0.671(sin^2(x)+5cos^2(x))/2 =22sin(x)=7-3csc(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for sqrt(2)sin(2x)=sin(4x),0<= x<= pi ?

    The general solution for sqrt(2)sin(2x)=sin(4x),0<= x<= pi is x=0,x= pi/2 ,x=pi,x= pi/8 ,x=(7pi)/8
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024