Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

50sin(x)+15cos(x)=40,0<x<pi

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

50sin(x)+15cos(x)=40,0<x<π

Solution

x=1.97713…,x=0.58154…
+1
Degrees
x=113.28144…∘,x=33.32006…∘
Solution steps
50sin(x)+15cos(x)=40,0<x<π
Subtract 15cos(x) from both sides50sin(x)=40−15cos(x)
Square both sides(50sin(x))2=(40−15cos(x))2
Subtract (40−15cos(x))2 from both sides2500sin2(x)−1600+1200cos(x)−225cos2(x)=0
Rewrite using trig identities
−1600+1200cos(x)−225cos2(x)+2500sin2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−1600+1200cos(x)−225cos2(x)+2500(1−cos2(x))
Simplify −1600+1200cos(x)−225cos2(x)+2500(1−cos2(x)):1200cos(x)−2725cos2(x)+900
−1600+1200cos(x)−225cos2(x)+2500(1−cos2(x))
Expand 2500(1−cos2(x)):2500−2500cos2(x)
2500(1−cos2(x))
Apply the distributive law: a(b−c)=ab−aca=2500,b=1,c=cos2(x)=2500⋅1−2500cos2(x)
Multiply the numbers: 2500⋅1=2500=2500−2500cos2(x)
=−1600+1200cos(x)−225cos2(x)+2500−2500cos2(x)
Simplify −1600+1200cos(x)−225cos2(x)+2500−2500cos2(x):1200cos(x)−2725cos2(x)+900
−1600+1200cos(x)−225cos2(x)+2500−2500cos2(x)
Group like terms=1200cos(x)−225cos2(x)−2500cos2(x)−1600+2500
Add similar elements: −225cos2(x)−2500cos2(x)=−2725cos2(x)=1200cos(x)−2725cos2(x)−1600+2500
Add/Subtract the numbers: −1600+2500=900=1200cos(x)−2725cos2(x)+900
=1200cos(x)−2725cos2(x)+900
=1200cos(x)−2725cos2(x)+900
900+1200cos(x)−2725cos2(x)=0
Solve by substitution
900+1200cos(x)−2725cos2(x)=0
Let: cos(x)=u900+1200u−2725u2=0
900+1200u−2725u2=0:u=−1096(55​−4)​,u=1096(4+55​)​
900+1200u−2725u2=0
Write in the standard form ax2+bx+c=0−2725u2+1200u+900=0
Solve with the quadratic formula
−2725u2+1200u+900=0
Quadratic Equation Formula:
For a=−2725,b=1200,c=900u1,2​=2(−2725)−1200±12002−4(−2725)⋅900​​
u1,2​=2(−2725)−1200±12002−4(−2725)⋅900​​
12002−4(−2725)⋅900​=15005​
12002−4(−2725)⋅900​
Apply rule −(−a)=a=12002+4⋅2725⋅900​
Multiply the numbers: 4⋅2725⋅900=9810000=12002+9810000​
12002=1440000=1440000+9810000​
Add the numbers: 1440000+9810000=11250000=11250000​
Prime factorization of 11250000:24⋅32⋅57
11250000
=57⋅24⋅32​
Apply exponent rule: ab+c=ab⋅ac=56⋅24⋅32⋅5​
Apply radical rule: =5​24​32​56​
Apply radical rule: 24​=224​=22=225​32​56​
Apply radical rule: 32​=3=22⋅35​56​
Apply radical rule: 56​=526​=53=53⋅22⋅35​
Refine=15005​
u1,2​=2(−2725)−1200±15005​​
Separate the solutionsu1​=2(−2725)−1200+15005​​,u2​=2(−2725)−1200−15005​​
u=2(−2725)−1200+15005​​:−1096(55​−4)​
2(−2725)−1200+15005​​
Remove parentheses: (−a)=−a=−2⋅2725−1200+15005​​
Multiply the numbers: 2⋅2725=5450=−5450−1200+15005​​
Apply the fraction rule: −ba​=−ba​=−5450−1200+15005​​
Cancel 5450−1200+15005​​:1096(55​−4)​
5450−1200+15005​​
Factor −1200+15005​:300(−4+55​)
−1200+15005​
Rewrite as=−300⋅4+300⋅55​
Factor out common term 300=300(−4+55​)
=5450300(−4+55​)​
Cancel the common factor: 50=1096(55​−4)​
=−1096(55​−4)​
u=2(−2725)−1200−15005​​:1096(4+55​)​
2(−2725)−1200−15005​​
Remove parentheses: (−a)=−a=−2⋅2725−1200−15005​​
Multiply the numbers: 2⋅2725=5450=−5450−1200−15005​​
Apply the fraction rule: −b−a​=ba​−1200−15005​=−(1200+15005​)=54501200+15005​​
Factor 1200+15005​:300(4+55​)
1200+15005​
Rewrite as=300⋅4+300⋅55​
Factor out common term 300=300(4+55​)
=5450300(4+55​)​
Cancel the common factor: 50=1096(4+55​)​
The solutions to the quadratic equation are:u=−1096(55​−4)​,u=1096(4+55​)​
Substitute back u=cos(x)cos(x)=−1096(55​−4)​,cos(x)=1096(4+55​)​
cos(x)=−1096(55​−4)​,cos(x)=1096(4+55​)​
cos(x)=−1096(55​−4)​,0<x<π:x=arccos(−1096(55​−4)​)
cos(x)=−1096(55​−4)​,0<x<π
Apply trig inverse properties
cos(x)=−1096(55​−4)​
General solutions for cos(x)=−1096(55​−4)​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−1096(55​−4)​)+2πn,x=−arccos(−1096(55​−4)​)+2πn
x=arccos(−1096(55​−4)​)+2πn,x=−arccos(−1096(55​−4)​)+2πn
Solutions for the range 0<x<πx=arccos(−1096(55​−4)​)
cos(x)=1096(4+55​)​,0<x<π:x=arccos(1096(4+55​)​)
cos(x)=1096(4+55​)​,0<x<π
Apply trig inverse properties
cos(x)=1096(4+55​)​
General solutions for cos(x)=1096(4+55​)​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(1096(4+55​)​)+2πn,x=2π−arccos(1096(4+55​)​)+2πn
x=arccos(1096(4+55​)​)+2πn,x=2π−arccos(1096(4+55​)​)+2πn
Solutions for the range 0<x<πx=arccos(1096(4+55​)​)
Combine all the solutionsx=arccos(−1096(55​−4)​),x=arccos(1096(4+55​)​)
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into 50sin(x)+15cos(x)=40
Remove the ones that don't agree with the equation.
Check the solution arccos(−1096(55​−4)​):True
arccos(−1096(55​−4)​)
Plug in n=1arccos(−1096(55​−4)​)
For 50sin(x)+15cos(x)=40plug inx=arccos(−1096(55​−4)​)50sin(arccos(−1096(55​−4)​))+15cos(arccos(−1096(55​−4)​))=40
Refine40=40
⇒True
Check the solution arccos(1096(4+55​)​):True
arccos(1096(4+55​)​)
Plug in n=1arccos(1096(4+55​)​)
For 50sin(x)+15cos(x)=40plug inx=arccos(1096(4+55​)​)50sin(arccos(1096(4+55​)​))+15cos(arccos(1096(4+55​)​))=40
Refine40=40
⇒True
x=arccos(−1096(55​−4)​),x=arccos(1096(4+55​)​)
Show solutions in decimal formx=1.97713…,x=0.58154…

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

10sin(x)cos(x)=6cos(x)sin(x)+cos(x)=sec(x)sin(x)=-0.2761sin(2y)=07sin^2(θ)-15sin(θ)+8=0

Frequently Asked Questions (FAQ)

  • What is the general solution for 50sin(x)+15cos(x)=40,0<x<pi ?

    The general solution for 50sin(x)+15cos(x)=40,0<x<pi is x=1.97713…,x=0.58154…
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024