Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

1+tan^2(x)=cot^2(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

1+tan2(x)=cot2(x)

Solution

x=0.66623…+πn,x=2.47535…+πn
+1
Degrees
x=38.17270…∘+180∘n,x=141.82729…∘+180∘n
Solution steps
1+tan2(x)=cot2(x)
Subtract cot2(x) from both sides1+tan2(x)−cot2(x)=0
Rewrite using trig identities
1−cot2(x)+tan2(x)
Use the basic trigonometric identity: tan(x)=cot(x)1​=1−cot2(x)+(cot(x)1​)2
(cot(x)1​)2=cot2(x)1​
(cot(x)1​)2
Apply exponent rule: (ba​)c=bcac​=cot2(x)12​
Apply rule 1a=112=1=cot2(x)1​
=1−cot2(x)+cot2(x)1​
1−cot2(x)+cot2(x)1​=0
Solve by substitution
1−cot2(x)+cot2(x)1​=0
Let: cot(x)=u1−u2+u21​=0
1−u2+u21​=0:u=i2−1+5​​​,u=−i2−1+5​​​,u=21+5​​​,u=−21+5​​​
1−u2+u21​=0
Multiply both sides by u2
1−u2+u21​=0
Multiply both sides by u21⋅u2−u2u2+u21​u2=0⋅u2
Simplify
1⋅u2−u2u2+u21​u2=0⋅u2
Simplify 1⋅u2:u2
1⋅u2
Multiply: 1⋅u2=u2=u2
Simplify −u2u2:−u4
−u2u2
Apply exponent rule: ab⋅ac=ab+cu2u2=u2+2=−u2+2
Add the numbers: 2+2=4=−u4
Simplify u21​u2:1
u21​u2
Multiply fractions: a⋅cb​=ca⋅b​=u21⋅u2​
Cancel the common factor: u2=1
Simplify 0⋅u2:0
0⋅u2
Apply rule 0⋅a=0=0
u2−u4+1=0
u2−u4+1=0
u2−u4+1=0
Solve u2−u4+1=0:u=i2−1+5​​​,u=−i2−1+5​​​,u=21+5​​​,u=−21+5​​​
u2−u4+1=0
Write in the standard form an​xn+…+a1​x+a0​=0−u4+u2+1=0
Rewrite the equation with v=u2 and v2=u4−v2+v+1=0
Solve −v2+v+1=0:v=−2−1+5​​,v=21+5​​
−v2+v+1=0
Solve with the quadratic formula
−v2+v+1=0
Quadratic Equation Formula:
For a=−1,b=1,c=1v1,2​=2(−1)−1±12−4(−1)⋅1​​
v1,2​=2(−1)−1±12−4(−1)⋅1​​
12−4(−1)⋅1​=5​
12−4(−1)⋅1​
Apply rule 1a=112=1=1−4(−1)⋅1​
Apply rule −(−a)=a=1+4⋅1⋅1​
Multiply the numbers: 4⋅1⋅1=4=1+4​
Add the numbers: 1+4=5=5​
v1,2​=2(−1)−1±5​​
Separate the solutionsv1​=2(−1)−1+5​​,v2​=2(−1)−1−5​​
v=2(−1)−1+5​​:−2−1+5​​
2(−1)−1+5​​
Remove parentheses: (−a)=−a=−2⋅1−1+5​​
Multiply the numbers: 2⋅1=2=−2−1+5​​
Apply the fraction rule: −ba​=−ba​=−2−1+5​​
v=2(−1)−1−5​​:21+5​​
2(−1)−1−5​​
Remove parentheses: (−a)=−a=−2⋅1−1−5​​
Multiply the numbers: 2⋅1=2=−2−1−5​​
Apply the fraction rule: −b−a​=ba​−1−5​=−(1+5​)=21+5​​
The solutions to the quadratic equation are:v=−2−1+5​​,v=21+5​​
v=−2−1+5​​,v=21+5​​
Substitute back v=u2,solve for u
Solve u2=−2−1+5​​:u=i2−1+5​​​,u=−i2−1+5​​​
u2=−2−1+5​​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=−2−1+5​​​,u=−−2−1+5​​​
Simplify −2−1+5​​​:i2−1+5​​​
−2−1+5​​​
Apply radical rule: −a​=−1​a​−25​−1​​=−1​25​−1​​=−1​25​−1​​
Apply imaginary number rule: −1​=i=i25​−1​​
Simplify −−2−1+5​​​:−i2−1+5​​​
−−2−1+5​​​
Simplify −2−1+5​​​:i25​−1​​
−2−1+5​​​
Apply radical rule: −a​=−1​a​−25​−1​​=−1​25​−1​​=−1​25​−1​​
Apply imaginary number rule: −1​=i=i25​−1​​
=−i25​−1​​
=−i2−1+5​​​
u=i2−1+5​​​,u=−i2−1+5​​​
Solve u2=21+5​​:u=21+5​​​,u=−21+5​​​
u2=21+5​​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=21+5​​​,u=−21+5​​​
The solutions are
u=i2−1+5​​​,u=−i2−1+5​​​,u=21+5​​​,u=−21+5​​​
u=i2−1+5​​​,u=−i2−1+5​​​,u=21+5​​​,u=−21+5​​​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of 1−u2+u21​ and compare to zero
Solve u2=0:u=0
u2=0
Apply rule xn=0⇒x=0
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=i2−1+5​​​,u=−i2−1+5​​​,u=21+5​​​,u=−21+5​​​
Substitute back u=cot(x)cot(x)=i2−1+5​​​,cot(x)=−i2−1+5​​​,cot(x)=21+5​​​,cot(x)=−21+5​​​
cot(x)=i2−1+5​​​,cot(x)=−i2−1+5​​​,cot(x)=21+5​​​,cot(x)=−21+5​​​
cot(x)=i2−1+5​​​:No Solution
cot(x)=i2−1+5​​​
NoSolution
cot(x)=−i2−1+5​​​:No Solution
cot(x)=−i2−1+5​​​
NoSolution
cot(x)=21+5​​​:x=arccot​21+5​​​​+πn
cot(x)=21+5​​​
Apply trig inverse properties
cot(x)=21+5​​​
General solutions for cot(x)=21+5​​​cot(x)=a⇒x=arccot(a)+πnx=arccot​21+5​​​​+πn
x=arccot​21+5​​​​+πn
cot(x)=−21+5​​​:x=arccot​−21+5​​​​+πn
cot(x)=−21+5​​​
Apply trig inverse properties
cot(x)=−21+5​​​
General solutions for cot(x)=−21+5​​​cot(x)=−a⇒x=arccot(−a)+πnx=arccot​−21+5​​​​+πn
x=arccot​−21+5​​​​+πn
Combine all the solutionsx=arccot​21+5​​​​+πn,x=arccot​−21+5​​​​+πn
Show solutions in decimal formx=0.66623…+πn,x=2.47535…+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2-2sin^2(x)=-3cos(x)+24tan(θ)+7=0arctan(x)+arctan(3x)+arctan(7x)=1802cos(a)=116sin^2(θ)=12

Frequently Asked Questions (FAQ)

  • What is the general solution for 1+tan^2(x)=cot^2(x) ?

    The general solution for 1+tan^2(x)=cot^2(x) is x=0.66623…+pin,x=2.47535…+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024