Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3cosh(x)+5sinh(x)=-3

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3cosh(x)+5sinh(x)=−3

Solution

x=−2ln(2)
+1
Degrees
x=−79.42881…∘
Solution steps
3cosh(x)+5sinh(x)=−3
Rewrite using trig identities
3cosh(x)+5sinh(x)=−3
Use the Hyperbolic identity: sinh(x)=2ex−e−x​3cosh(x)+5⋅2ex−e−x​=−3
Use the Hyperbolic identity: cosh(x)=2ex+e−x​3⋅2ex+e−x​+5⋅2ex−e−x​=−3
3⋅2ex+e−x​+5⋅2ex−e−x​=−3
3⋅2ex+e−x​+5⋅2ex−e−x​=−3:x=−2ln(2)
3⋅2ex+e−x​+5⋅2ex−e−x​=−3
Apply exponent rules
3⋅2ex+e−x​+5⋅2ex−e−x​=−3
Apply exponent rule: abc=(ab)ce−x=(ex)−13⋅2ex+(ex)−1​+5⋅2ex−(ex)−1​=−3
3⋅2ex+(ex)−1​+5⋅2ex−(ex)−1​=−3
Rewrite the equation with ex=u3⋅2u+(u)−1​+5⋅2u−(u)−1​=−3
Solve 3⋅2u+u−1​+5⋅2u−u−1​=−3:u=41​,u=−1
3⋅2u+u−1​+5⋅2u−u−1​=−3
Refine2u3(u2+1)​+2u5(u2−1)​=−3
Multiply both sides by 2u
2u3(u2+1)​+2u5(u2−1)​=−3
Multiply both sides by 2u2u3(u2+1)​⋅2u+2u5(u2−1)​⋅2u=−3⋅2u
Simplify
2u3(u2+1)​⋅2u+2u5(u2−1)​⋅2u=−3⋅2u
Simplify 2u3(u2+1)​⋅2u:3(u2+1)
2u3(u2+1)​⋅2u
Multiply fractions: a⋅cb​=ca⋅b​=2u3(u2+1)⋅2u​
Cancel the common factor: 2=u3(u2+1)u​
Cancel the common factor: u=3(u2+1)
Simplify 2u5(u2−1)​⋅2u:5(u2−1)
2u5(u2−1)​⋅2u
Multiply fractions: a⋅cb​=ca⋅b​=2u5(u2−1)⋅2u​
Cancel the common factor: 2=u5(u2−1)u​
Cancel the common factor: u=5(u2−1)
Simplify −3⋅2u:−6u
−3⋅2u
Multiply the numbers: 3⋅2=6=−6u
3(u2+1)+5(u2−1)=−6u
3(u2+1)+5(u2−1)=−6u
3(u2+1)+5(u2−1)=−6u
Solve 3(u2+1)+5(u2−1)=−6u:u=41​,u=−1
3(u2+1)+5(u2−1)=−6u
Expand 3(u2+1)+5(u2−1):8u2−2
3(u2+1)+5(u2−1)
Expand 3(u2+1):3u2+3
3(u2+1)
Apply the distributive law: a(b+c)=ab+aca=3,b=u2,c=1=3u2+3⋅1
Multiply the numbers: 3⋅1=3=3u2+3
=3u2+3+5(u2−1)
Expand 5(u2−1):5u2−5
5(u2−1)
Apply the distributive law: a(b−c)=ab−aca=5,b=u2,c=1=5u2−5⋅1
Multiply the numbers: 5⋅1=5=5u2−5
=3u2+3+5u2−5
Simplify 3u2+3+5u2−5:8u2−2
3u2+3+5u2−5
Group like terms=3u2+5u2+3−5
Add similar elements: 3u2+5u2=8u2=8u2+3−5
Add/Subtract the numbers: 3−5=−2=8u2−2
=8u2−2
8u2−2=−6u
Move 6uto the left side
8u2−2=−6u
Add 6u to both sides8u2−2+6u=−6u+6u
Simplify8u2−2+6u=0
8u2−2+6u=0
Write in the standard form ax2+bx+c=08u2+6u−2=0
Solve with the quadratic formula
8u2+6u−2=0
Quadratic Equation Formula:
For a=8,b=6,c=−2u1,2​=2⋅8−6±62−4⋅8(−2)​​
u1,2​=2⋅8−6±62−4⋅8(−2)​​
62−4⋅8(−2)​=10
62−4⋅8(−2)​
Apply rule −(−a)=a=62+4⋅8⋅2​
Multiply the numbers: 4⋅8⋅2=64=62+64​
62=36=36+64​
Add the numbers: 36+64=100=100​
Factor the number: 100=102=102​
Apply radical rule: 102​=10=10
u1,2​=2⋅8−6±10​
Separate the solutionsu1​=2⋅8−6+10​,u2​=2⋅8−6−10​
u=2⋅8−6+10​:41​
2⋅8−6+10​
Add/Subtract the numbers: −6+10=4=2⋅84​
Multiply the numbers: 2⋅8=16=164​
Cancel the common factor: 4=41​
u=2⋅8−6−10​:−1
2⋅8−6−10​
Subtract the numbers: −6−10=−16=2⋅8−16​
Multiply the numbers: 2⋅8=16=16−16​
Apply the fraction rule: b−a​=−ba​=−1616​
Apply rule aa​=1=−1
The solutions to the quadratic equation are:u=41​,u=−1
u=41​,u=−1
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of 32u+u−1​+52u−u−1​ and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=41​,u=−1
u=41​,u=−1
Substitute back u=ex,solve for x
Solve ex=41​:x=−2ln(2)
ex=41​
Apply exponent rules
ex=41​
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(41​)
Apply log rule: ln(ea)=aln(ex)=xx=ln(41​)
Simplify ln(41​):−2ln(2)
ln(41​)
Apply log rule: loga​(x1​)=−loga​(x)=−ln(4)
Rewrite 4 in power-base form:4=22=−ln(22)
Apply log rule: loga​(xb)=b⋅loga​(x)ln(22)=2ln(2)=−2ln(2)
x=−2ln(2)
x=−2ln(2)
Solve ex=−1:No Solution for x∈R
ex=−1
af(x) cannot be zero or negative for x∈RNoSolutionforx∈R
x=−2ln(2)
x=−2ln(2)

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

6cos^2(x)-5cos(x)+1=06cos(x)=56cos(2x)=6cos^2(x)-5(-4cos(x)-6sin(x))^2-20sin^2(x)=16sin(u)= 5/13

Frequently Asked Questions (FAQ)

  • What is the general solution for 3cosh(x)+5sinh(x)=-3 ?

    The general solution for 3cosh(x)+5sinh(x)=-3 is x=-2ln(2)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024