Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin^2(x)cos^2(x)=(2-sqrt(2))/(16)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin2(x)cos2(x)=162−2​​

Solution

x=0.19634…+2πn,x=π−0.19634…+2πn,x=−0.19634…+2πn,x=π+0.19634…+2πn,x=1.37444…+2πn,x=π−1.37444…+2πn,x=−1.37444…+2πn,x=π+1.37444…+2πn
+1
Degrees
x=11.25∘+360∘n,x=168.75∘+360∘n,x=−11.25∘+360∘n,x=191.25∘+360∘n,x=78.75∘+360∘n,x=101.25∘+360∘n,x=−78.75∘+360∘n,x=258.75∘+360∘n
Solution steps
sin2(x)cos2(x)=162−2​​
Subtract 162−2​​ from both sidessin2(x)cos2(x)−82​2​−1​=0
Simplify sin2(x)cos2(x)−82​2​−1​:82​82​sin2(x)cos2(x)−2​+1​
sin2(x)cos2(x)−82​2​−1​
Convert element to fraction: sin2(x)cos2(x)=82​sin2(x)cos2(x)82​​=82​sin2(x)cos2(x)⋅82​​−82​2​−1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=82​sin2(x)cos2(x)⋅82​−(2​−1)​
Expand sin2(x)cos2(x)⋅82​−(2​−1):sin2(x)cos2(x)⋅82​−2​+1
sin2(x)cos2(x)⋅82​−(2​−1)
=82​sin2(x)cos2(x)−(2​−1)
−(2​−1):−2​+1
−(2​−1)
Distribute parentheses=−(2​)−(−1)
Apply minus-plus rules−(−a)=a,−(a)=−a=−2​+1
=sin2(x)cos2(x)⋅82​−2​+1
=82​82​sin2(x)cos2(x)−2​+1​
82​82​sin2(x)cos2(x)−2​+1​=0
g(x)f(x)​=0⇒f(x)=082​sin2(x)cos2(x)−2​+1=0
Rewrite using trig identities
1−2​+8cos2(x)sin2(x)2​
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=1−2​+8(1−sin2(x))sin2(x)2​
1−2​+(1−sin2(x))⋅8sin2(x)2​=0
Solve by substitution
1−2​+(1−sin2(x))⋅8sin2(x)2​=0
Let: sin(x)=u1−2​+(1−u2)⋅8u22​=0
1−2​+(1−u2)⋅8u22​=0:u=82​−2​64+322​​+16​​,u=−82​−2​64+322​​+16​​,u=82​2​64+322​​+16​​,u=−82​2​64+322​​+16​​
1−2​+(1−u2)⋅8u22​=0
Expand 1−2​+(1−u2)⋅8u22​:1−2​+82​u2−82​u4
1−2​+(1−u2)⋅8u22​
=1−2​+82​u2(1−u2)
Expand 8u22​(1−u2):82​u2−82​u4
8u22​(1−u2)
Apply the distributive law: a(b−c)=ab−aca=8u22​,b=1,c=u2=8u22​⋅1−8u22​u2
=8⋅1⋅2​u2−82​u2u2
Simplify 8⋅1⋅2​u2−82​u2u2:82​u2−82​u4
8⋅1⋅2​u2−82​u2u2
8⋅1⋅2​u2=82​u2
8⋅1⋅2​u2
Multiply the numbers: 8⋅1=8=82​u2
82​u2u2=82​u4
82​u2u2
Apply exponent rule: ab⋅ac=ab+cu2u2=u2+2=82​u2+2
Add the numbers: 2+2=4=82​u4
=82​u2−82​u4
=82​u2−82​u4
=1−2​+82​u2−82​u4
1−2​+82​u2−82​u4=0
Write in the standard form an​xn+…+a1​x+a0​=0−82​u4+82​u2+1−2​=0
Rewrite the equation with v=u2 and v2=u4−82​v2+82​v+1−2​=0
Solve −82​v2+82​v+1−2​=0:v=32−2​64+322​​+16​,v=322​64+322​​+16​
−82​v2+82​v+1−2​=0
Solve with the quadratic formula
−82​v2+82​v+1−2​=0
Quadratic Equation Formula:
For a=−82​,b=82​,c=1−2​v1,2​=2(−82​)−82​±(82​)2−4(−82​)(1−2​)​​
v1,2​=2(−82​)−82​±(82​)2−4(−82​)(1−2​)​​
(82​)2−4(−82​)(1−2​)​=64+322​​
(82​)2−4(−82​)(1−2​)​
Apply rule −(−a)=a=(82​)2+4⋅82​(1−2​)​
(82​)2=82⋅2
(82​)2
Apply exponent rule: (a⋅b)n=anbn=82(2​)2
(2​)2:2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
=82⋅2
4⋅82​(1−2​)=322​(1−2​)
4⋅82​(1−2​)
Multiply the numbers: 4⋅8=32=322​(1−2​)
=82⋅2+322​(1−2​)​
82⋅2=128
82⋅2
82=64=64⋅2
Multiply the numbers: 64⋅2=128=128
=128+322​(1−2​)​
Expand 128+322​(1−2​):64+322​
128+322​(1−2​)
Expand 322​(1−2​):322​−64
322​(1−2​)
Apply the distributive law: a(b−c)=ab−aca=322​,b=1,c=2​=322​⋅1−322​2​
=32⋅1⋅2​−322​2​
Simplify 32⋅1⋅2​−322​2​:322​−64
32⋅1⋅2​−322​2​
32⋅1⋅2​=322​
32⋅1⋅2​
Multiply the numbers: 32⋅1=32=322​
322​2​=64
322​2​
Apply radical rule: a​a​=a2​2​=2=32⋅2
Multiply the numbers: 32⋅2=64=64
=322​−64
=322​−64
=128+322​−64
Subtract the numbers: 128−64=64=64+322​
=64+322​​
v1,2​=2(−82​)−82​±64+322​​​
Separate the solutionsv1​=2(−82​)−82​+64+322​​​,v2​=2(−82​)−82​−64+322​​​
v=2(−82​)−82​+64+322​​​:32−2​64+322​​+16​
2(−82​)−82​+64+322​​​
Remove parentheses: (−a)=−a=−2⋅82​−82​+64+322​​​
Multiply the numbers: 2⋅8=16=−162​−82​+64+322​​​
Apply the fraction rule: −b−a​=ba​−82​+64+322​​=−(−64+322​​+82​)=162​−64+322​​+82​​
Rationalize 162​−64+322​​+82​​:32−2​64+322​​+16​
162​−64+322​​+82​​
Multiply by the conjugate 2​2​​=162​2​(−64+322​​+82​)2​​
(−64+322​​+82​)2​=−2​64+322​​+16
(−64+322​​+82​)2​
=2​(−64+322​​+82​)
Apply the distributive law: a(b+c)=ab+aca=2​,b=−64+322​​,c=82​=2​(−64+322​​)+2​⋅82​
Apply minus-plus rules+(−a)=−a=−2​64+322​​+82​2​
82​2​=16
82​2​
Apply radical rule: a​a​=a2​2​=2=8⋅2
Multiply the numbers: 8⋅2=16=16
=−2​64+322​​+16
162​2​=32
162​2​
Apply radical rule: a​a​=a2​2​=2=16⋅2
Multiply the numbers: 16⋅2=32=32
=32−2​64+322​​+16​
=32−2​64+322​​+16​
v=2(−82​)−82​−64+322​​​:322​64+322​​+16​
2(−82​)−82​−64+322​​​
Remove parentheses: (−a)=−a=−2⋅82​−82​−64+322​​​
Multiply the numbers: 2⋅8=16=−162​−82​−64+322​​​
Apply the fraction rule: −b−a​=ba​−82​−64+322​​=−(64+322​​+82​)=162​64+322​​+82​​
Rationalize 162​64+322​​+82​​:322​64+322​​+16​
162​64+322​​+82​​
Multiply by the conjugate 2​2​​=162​2​(64+322​​+82​)2​​
(64+322​​+82​)2​=2​64+322​​+16
(64+322​​+82​)2​
=2​(64+322​​+82​)
Apply the distributive law: a(b+c)=ab+aca=2​,b=64+322​​,c=82​=2​64+322​​+2​⋅82​
=2​64+322​​+82​2​
82​2​=16
82​2​
Apply radical rule: a​a​=a2​2​=2=8⋅2
Multiply the numbers: 8⋅2=16=16
=2​64+322​​+16
162​2​=32
162​2​
Apply radical rule: a​a​=a2​2​=2=16⋅2
Multiply the numbers: 16⋅2=32=32
=322​64+322​​+16​
=322​64+322​​+16​
The solutions to the quadratic equation are:v=32−2​64+322​​+16​,v=322​64+322​​+16​
v=32−2​64+322​​+16​,v=322​64+322​​+16​
Substitute back v=u2,solve for u
Solve u2=32−2​64+322​​+16​:u=82​−2​64+322​​+16​​,u=−82​−2​64+322​​+16​​
u2=32−2​64+322​​+16​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=32−2​64+322​​+16​​,u=−32−2​64+322​​+16​​
32−2​64+322​​+16​​=82​−2​64+322​​+16​​
32−2​64+322​​+16​​
Apply radical rule: assuming a≥0,b≥0=32​−2​64+322​​+16​​
32​=42​
32​
Prime factorization of 32:25
32
32divides by 232=16⋅2=2⋅16
16divides by 216=8⋅2=2⋅2⋅8
8divides by 28=4⋅2=2⋅2⋅2⋅4
4divides by 24=2⋅2=2⋅2⋅2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2⋅2⋅2
=25
=25​
Apply exponent rule: ab+c=ab⋅ac=24⋅2​
Apply radical rule: =2​24​
Apply radical rule: 24​=224​=22=222​
Refine=42​
=42​−2​64+322​​+16​​
Rationalize 42​−2​64+322​​+16​​:82​−2​64+322​​+16​​
42​−2​64+322​​+16​​
Multiply by the conjugate 2​2​​=42​2​−2​64+322​​+16​2​​
42​2​=8
42​2​
Apply radical rule: a​a​=a2​2​=2=4⋅2
Multiply the numbers: 4⋅2=8=8
=82​−2​64+322​​+16​​
=82​−2​64+322​​+16​​
−32−2​64+322​​+16​​=−82​−2​64+322​​+16​​
−32−2​64+322​​+16​​
Simplify 32−2​64+322​​+16​​:42​−2​64+322​​+16​​
32−2​64+322​​+16​​
Apply radical rule: assuming a≥0,b≥0=32​−2​64+322​​+16​​
32​=42​
32​
Prime factorization of 32:25
32
32divides by 232=16⋅2=2⋅16
16divides by 216=8⋅2=2⋅2⋅8
8divides by 28=4⋅2=2⋅2⋅2⋅4
4divides by 24=2⋅2=2⋅2⋅2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2⋅2⋅2
=25
=25​
Apply exponent rule: ab+c=ab⋅ac=24⋅2​
Apply radical rule: =2​24​
Apply radical rule: 24​=224​=22=222​
Refine=42​
=42​−2​64+322​​+16​​
=−42​−2​64+322​​+16​​
Rationalize −42​−2​64+322​​+16​​:−82​−2​64+322​​+16​​
−42​−2​64+322​​+16​​
Multiply by the conjugate 2​2​​=−42​2​−2​64+322​​+16​2​​
42​2​=8
42​2​
Apply radical rule: a​a​=a2​2​=2=4⋅2
Multiply the numbers: 4⋅2=8=8
=−82​−2​64+322​​+16​​
=−82​−2​64+322​​+16​​
u=82​−2​64+322​​+16​​,u=−82​−2​64+322​​+16​​
Solve u2=322​64+322​​+16​:u=82​2​64+322​​+16​​,u=−82​2​64+322​​+16​​
u2=322​64+322​​+16​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=322​64+322​​+16​​,u=−322​64+322​​+16​​
322​64+322​​+16​​=82​2​64+322​​+16​​
322​64+322​​+16​​
Apply radical rule: assuming a≥0,b≥0=32​2​64+322​​+16​​
32​=42​
32​
Prime factorization of 32:25
32
32divides by 232=16⋅2=2⋅16
16divides by 216=8⋅2=2⋅2⋅8
8divides by 28=4⋅2=2⋅2⋅2⋅4
4divides by 24=2⋅2=2⋅2⋅2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2⋅2⋅2
=25
=25​
Apply exponent rule: ab+c=ab⋅ac=24⋅2​
Apply radical rule: =2​24​
Apply radical rule: 24​=224​=22=222​
Refine=42​
=42​2​64+322​​+16​​
Rationalize 42​2​64+322​​+16​​:82​2​64+322​​+16​​
42​2​64+322​​+16​​
Multiply by the conjugate 2​2​​=42​2​2​64+322​​+16​2​​
42​2​=8
42​2​
Apply radical rule: a​a​=a2​2​=2=4⋅2
Multiply the numbers: 4⋅2=8=8
=82​2​64+322​​+16​​
=82​2​64+322​​+16​​
−322​64+322​​+16​​=−82​2​64+322​​+16​​
−322​64+322​​+16​​
Simplify 322​64+322​​+16​​:42​2​64+322​​+16​​
322​64+322​​+16​​
Apply radical rule: assuming a≥0,b≥0=32​2​64+322​​+16​​
32​=42​
32​
Prime factorization of 32:25
32
32divides by 232=16⋅2=2⋅16
16divides by 216=8⋅2=2⋅2⋅8
8divides by 28=4⋅2=2⋅2⋅2⋅4
4divides by 24=2⋅2=2⋅2⋅2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2⋅2⋅2
=25
=25​
Apply exponent rule: ab+c=ab⋅ac=24⋅2​
Apply radical rule: =2​24​
Apply radical rule: 24​=224​=22=222​
Refine=42​
=42​2​64+322​​+16​​
=−42​2​64+322​​+16​​
Rationalize −42​2​64+322​​+16​​:−82​2​64+322​​+16​​
−42​2​64+322​​+16​​
Multiply by the conjugate 2​2​​=−42​2​2​64+322​​+16​2​​
42​2​=8
42​2​
Apply radical rule: a​a​=a2​2​=2=4⋅2
Multiply the numbers: 4⋅2=8=8
=−82​2​64+322​​+16​​
=−82​2​64+322​​+16​​
u=82​2​64+322​​+16​​,u=−82​2​64+322​​+16​​
The solutions are
u=82​−2​64+322​​+16​​,u=−82​−2​64+322​​+16​​,u=82​2​64+322​​+16​​,u=−82​2​64+322​​+16​​
Substitute back u=sin(x)sin(x)=82​−2​64+322​​+16​​,sin(x)=−82​−2​64+322​​+16​​,sin(x)=82​2​64+322​​+16​​,sin(x)=−82​2​64+322​​+16​​
sin(x)=82​−2​64+322​​+16​​,sin(x)=−82​−2​64+322​​+16​​,sin(x)=82​2​64+322​​+16​​,sin(x)=−82​2​64+322​​+16​​
sin(x)=82​−2​64+322​​+16​​:x=arcsin​82​−2​64+322​​+16​​​+2πn,x=π−arcsin​82​−2​64+322​​+16​​​+2πn
sin(x)=82​−2​64+322​​+16​​
Apply trig inverse properties
sin(x)=82​−2​64+322​​+16​​
General solutions for sin(x)=82​−2​64+322​​+16​​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin​82​−2​64+322​​+16​​​+2πn,x=π−arcsin​82​−2​64+322​​+16​​​+2πn
x=arcsin​82​−2​64+322​​+16​​​+2πn,x=π−arcsin​82​−2​64+322​​+16​​​+2πn
sin(x)=−82​−2​64+322​​+16​​:x=arcsin​−82​−2​64+322​​+16​​​+2πn,x=π+arcsin​82​−2​64+322​​+16​​​+2πn
sin(x)=−82​−2​64+322​​+16​​
Apply trig inverse properties
sin(x)=−82​−2​64+322​​+16​​
General solutions for sin(x)=−82​−2​64+322​​+16​​sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πnx=arcsin​−82​−2​64+322​​+16​​​+2πn,x=π+arcsin​82​−2​64+322​​+16​​​+2πn
x=arcsin​−82​−2​64+322​​+16​​​+2πn,x=π+arcsin​82​−2​64+322​​+16​​​+2πn
sin(x)=82​2​64+322​​+16​​:x=arcsin​82​2​64+322​​+16​​​+2πn,x=π−arcsin​82​2​64+322​​+16​​​+2πn
sin(x)=82​2​64+322​​+16​​
Apply trig inverse properties
sin(x)=82​2​64+322​​+16​​
General solutions for sin(x)=82​2​64+322​​+16​​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin​82​2​64+322​​+16​​​+2πn,x=π−arcsin​82​2​64+322​​+16​​​+2πn
x=arcsin​82​2​64+322​​+16​​​+2πn,x=π−arcsin​82​2​64+322​​+16​​​+2πn
sin(x)=−82​2​64+322​​+16​​:x=arcsin​−82​2​64+322​​+16​​​+2πn,x=π+arcsin​82​2​64+322​​+16​​​+2πn
sin(x)=−82​2​64+322​​+16​​
Apply trig inverse properties
sin(x)=−82​2​64+322​​+16​​
General solutions for sin(x)=−82​2​64+322​​+16​​sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πnx=arcsin​−82​2​64+322​​+16​​​+2πn,x=π+arcsin​82​2​64+322​​+16​​​+2πn
x=arcsin​−82​2​64+322​​+16​​​+2πn,x=π+arcsin​82​2​64+322​​+16​​​+2πn
Combine all the solutionsx=arcsin​82​−2​64+322​​+16​​​+2πn,x=π−arcsin​82​−2​64+322​​+16​​​+2πn,x=arcsin​−82​−2​64+322​​+16​​​+2πn,x=π+arcsin​82​−2​64+322​​+16​​​+2πn,x=arcsin​82​2​64+322​​+16​​​+2πn,x=π−arcsin​82​2​64+322​​+16​​​+2πn,x=arcsin​−82​2​64+322​​+16​​​+2πn,x=π+arcsin​82​2​64+322​​+16​​​+2πn
Show solutions in decimal formx=0.19634…+2πn,x=π−0.19634…+2πn,x=−0.19634…+2πn,x=π+0.19634…+2πn,x=1.37444…+2πn,x=π−1.37444…+2πn,x=−1.37444…+2πn,x=π+1.37444…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

(sin(x)-1)(sin(x)-5)=0csc(x)= 5/2csc(x)= 5/43cos(2θ)=9cos(θ)-63cosh(x)+5sinh(x)=-3
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024