Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

solvefor x,sin(x+60)=cos(y-37)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

solve for x,sin(x+60∘)=cos(y−37∘)

Solution

x=−y+360∘n+67∘,x=y+180∘+360∘n−187∘
+1
Radians
x=−y+18067π​+2πn,x=y+π−180187π​+2πn
Solution steps
sin(x+60∘)=cos(y−37∘)
Rewrite using trig identities
cos(y−18037π​)
Use the following identity: cos(x)=sin(90∘−x)sin(2π​−(y−18037π​))
sin(x+3π​)=sin(2π​−(y−18037π​))
Apply trig inverse properties
sin(x+3π​)=sin(2π​−(y−18037π​))
sin(x)=sin(y)⇒x=y+2πn,x=π−y+2πnx+3π​=2π​−(y−18037π​)+2πn,x+3π​=π−(2π​−(y−18037π​))+2πn
x+3π​=2π​−(y−18037π​)+2πn,x+3π​=π−(2π​−(y−18037π​))+2πn
x+60∘=90∘−(y−37∘)+360∘n:x=−y+360∘n+67∘
x+3π​=2π​−(y−18037π​)+2πn
Move 60∘to the right side
x+3π​=2π​−(y−18037π​)+2πn
Subtract 60∘ from both sidesx+3π​−3π​=2π​−(y−18037π​)+2πn−3π​
Simplify
x+3π​−3π​=2π​−(y−18037π​)+2πn−3π​
Simplify x+60∘−60∘:x
x+60∘−60∘
Add similar elements: 60∘−60∘=0
=x
Simplify 90∘−(y−37∘)+360∘n−60∘:−y+360∘n+67∘
2π​−(y−18037π​)+2πn−3π​
Least Common Multiplier of 2,3:6
2,3
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Multiply each factor the greatest number of times it occurs in either 2 or 3=2⋅3
Multiply the numbers: 2⋅3=6=6
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 6
For 90∘:multiply the denominator and numerator by 390∘=2⋅3180∘3​=90∘
For 60∘:multiply the denominator and numerator by 260∘=3⋅2180∘2​=60∘
=90∘−60∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=6180∘3−180∘2​
Add similar elements: 540∘−360∘=180∘=−(y−18037π​)+2πn+6π​
−(y−37∘):−y+37∘
−(y−18037π​)
Distribute parentheses=−y−(−18037π​)
Apply minus-plus rules−(−a)=a,−(a)=−a=−y+18037π​
=−y+18037π​+2πn+6π​
Simplify −y+37∘+360∘n+30∘:−y+360∘n+67∘
−y+18037π​+2πn+6π​
Group like terms=−y+2πn+6π​+18037π​
Least Common Multiplier of 6,180:180
6,180
Least Common Multiplier (LCM)
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Prime factorization of 180:2⋅2⋅3⋅3⋅5
180
180divides by 2180=90⋅2=2⋅90
90divides by 290=45⋅2=2⋅2⋅45
45divides by 345=15⋅3=2⋅2⋅3⋅15
15divides by 315=5⋅3=2⋅2⋅3⋅3⋅5
2,3,5 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3⋅3⋅5
Multiply each factor the greatest number of times it occurs in either 6 or 180=2⋅2⋅3⋅3⋅5
Multiply the numbers: 2⋅2⋅3⋅3⋅5=180=180
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 180
For 30∘:multiply the denominator and numerator by 3030∘=6⋅30180∘30​=30∘
=30∘+37∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=180180∘30+6660∘​
Add similar elements: 5400∘+6660∘=12060∘=−y+2πn+18067π​
=−y+2πn+18067π​
x=−y+2πn+18067π​
x=−y+2πn+18067π​
x=−y+2πn+18067π​
x+60∘=180∘−(90∘−(y−37∘))+360∘n:x=y+180∘+360∘n−187∘
x+3π​=π−(2π​−(y−18037π​))+2πn
Move 60∘to the right side
x+3π​=π−(2π​−(y−18037π​))+2πn
Subtract 60∘ from both sidesx+3π​−3π​=π−(2π​−(y−18037π​))+2πn−3π​
Simplify
x+3π​−3π​=π−(2π​−(y−18037π​))+2πn−3π​
Simplify x+60∘−60∘:x
x+60∘−60∘
Add similar elements: 60∘−60∘=0
=x
Simplify 180∘−(90∘−(y−37∘))+360∘n−60∘:y+180∘+360∘n−187∘
π−(2π​−(y−18037π​))+2πn−3π​
Expand 90∘−(y−37∘):−y+127∘
2π​−(y−18037π​)
−(y−37∘):−y+37∘
−(y−18037π​)
Distribute parentheses=−y−(−18037π​)
Apply minus-plus rules−(−a)=a,−(a)=−a=−y+18037π​
=2π​−y+18037π​
Simplify 90∘−y+37∘:−y+127∘
2π​−y+18037π​
Group like terms=−y+2π​+18037π​
Least Common Multiplier of 2,180:180
2,180
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 180:2⋅2⋅3⋅3⋅5
180
180divides by 2180=90⋅2=2⋅90
90divides by 290=45⋅2=2⋅2⋅45
45divides by 345=15⋅3=2⋅2⋅3⋅15
15divides by 315=5⋅3=2⋅2⋅3⋅3⋅5
2,3,5 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3⋅3⋅5
Multiply each factor the greatest number of times it occurs in either 2 or 180=2⋅2⋅3⋅3⋅5
Multiply the numbers: 2⋅2⋅3⋅3⋅5=180=180
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 180
For 90∘:multiply the denominator and numerator by 9090∘=2⋅90180∘90​=90∘
=90∘+37∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=180180∘90+6660∘​
Add similar elements: 16200∘+6660∘=22860∘=−y+180127π​
=−y+180127π​
=π−(−y+180127π​)+2πn−3π​
−(−y+127∘):y−127∘
−(−y+180127π​)
Distribute parentheses=−(−y)−180127π​
Apply minus-plus rules−(−a)=a,−(a)=−a=y−180127π​
=π+y−180127π​+2πn−3π​
Simplify 180∘+y−127∘+360∘n−60∘:y+180∘+360∘n−187∘
π+y−180127π​+2πn−3π​
Group like terms=y+π+2πn−3π​−180127π​
Least Common Multiplier of 3,180:180
3,180
Least Common Multiplier (LCM)
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 180:2⋅2⋅3⋅3⋅5
180
180divides by 2180=90⋅2=2⋅90
90divides by 290=45⋅2=2⋅2⋅45
45divides by 345=15⋅3=2⋅2⋅3⋅15
15divides by 315=5⋅3=2⋅2⋅3⋅3⋅5
2,3,5 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3⋅3⋅5
Multiply each factor the greatest number of times it occurs in either 3 or 180=3⋅3⋅2⋅2⋅5
Multiply the numbers: 3⋅3⋅2⋅2⋅5=180=180
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 180
For 60∘:multiply the denominator and numerator by 6060∘=3⋅60180∘60​=60∘
=−60∘−127∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=180−180∘60−22860∘​
Add similar elements: −10800∘−22860∘=−33660∘=180−33660∘​
Apply the fraction rule: b−a​=−ba​=y+π+2πn−180187π​
=y+π+2πn−180187π​
x=y+π+2πn−180187π​
x=y+π+2πn−180187π​
x=y+π+2πn−180187π​
x=−y+360∘n+67∘,x=y+180∘+360∘n−187∘

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

10cos(x)=0(2cos(x)+1)(sqrt(3)tan(x)-1)=0sin^2(x)-cos(x)tan(x)=0sin(x+30)= 1/2sin(θ)=21

Frequently Asked Questions (FAQ)

  • What is the general solution for solvefor x,sin(x+60)=cos(y-37) ?

    The general solution for solvefor x,sin(x+60)=cos(y-37) is x=-y+360n+67,x=y+180+360n-187
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024