Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(sin(2x))/(4sin(2x)-1)=1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

4sin(2x)−1sin(2x)​=1

Solution

x=20.33983…​+πn,x=2π​−20.33983…​+πn
+1
Degrees
x=9.73561…∘+180∘n,x=80.26438…∘+180∘n
Solution steps
4sin(2x)−1sin(2x)​=1
Solve by substitution
4sin(2x)−1sin(2x)​=1
Let: sin(2x)=u4u−1u​=1
4u−1u​=1:u=31​
4u−1u​=1
Multiply both sides by 4u−1
4u−1u​=1
Multiply both sides by 4u−14u−1u​(4u−1)=1⋅(4u−1)
Simplify
4u−1u​(4u−1)=1⋅(4u−1)
Simplify 4u−1u​(4u−1):u
4u−1u​(4u−1)
Multiply fractions: a⋅cb​=ca⋅b​=4u−1u(4u−1)​
Cancel the common factor: 4u−1=u
Simplify 1⋅(4u−1):4u−1
1⋅(4u−1)
Multiply: 1⋅(4u−1)=(4u−1)=(4u−1)
Remove parentheses: (a)=a=4u−1
u=4u−1
u=4u−1
u=4u−1
Move 4uto the left side
u=4u−1
Subtract 4u from both sidesu−4u=4u−1−4u
Simplify−3u=−1
−3u=−1
Divide both sides by −3
−3u=−1
Divide both sides by −3−3−3u​=−3−1​
Simplifyu=31​
u=31​
Verify Solutions
Find undefined (singularity) points:u=41​
Take the denominator(s) of 4u−1u​ and compare to zero
Solve 4u−1=0:u=41​
4u−1=0
Move 1to the right side
4u−1=0
Add 1 to both sides4u−1+1=0+1
Simplify4u=1
4u=1
Divide both sides by 4
4u=1
Divide both sides by 444u​=41​
Simplifyu=41​
u=41​
The following points are undefinedu=41​
Combine undefined points with solutions:
u=31​
Substitute back u=sin(2x)sin(2x)=31​
sin(2x)=31​
sin(2x)=31​:x=2arcsin(31​)​+πn,x=2π​−2arcsin(31​)​+πn
sin(2x)=31​
Apply trig inverse properties
sin(2x)=31​
General solutions for sin(2x)=31​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πn2x=arcsin(31​)+2πn,2x=π−arcsin(31​)+2πn
2x=arcsin(31​)+2πn,2x=π−arcsin(31​)+2πn
Solve 2x=arcsin(31​)+2πn:x=2arcsin(31​)​+πn
2x=arcsin(31​)+2πn
Divide both sides by 2
2x=arcsin(31​)+2πn
Divide both sides by 222x​=2arcsin(31​)​+22πn​
Simplifyx=2arcsin(31​)​+πn
x=2arcsin(31​)​+πn
Solve 2x=π−arcsin(31​)+2πn:x=2π​−2arcsin(31​)​+πn
2x=π−arcsin(31​)+2πn
Divide both sides by 2
2x=π−arcsin(31​)+2πn
Divide both sides by 222x​=2π​−2arcsin(31​)​+22πn​
Simplifyx=2π​−2arcsin(31​)​+πn
x=2π​−2arcsin(31​)​+πn
x=2arcsin(31​)​+πn,x=2π​−2arcsin(31​)​+πn
Combine all the solutionsx=2arcsin(31​)​+πn,x=2π​−2arcsin(31​)​+πn
Show solutions in decimal formx=20.33983…​+πn,x=2π​−20.33983…​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2cos(θ)sin(θ)=sin(θ)4cos(x)=sec(x)9.6=11.6cos(3.922t)cos(θ)=0.5632sin(z)=-10

Frequently Asked Questions (FAQ)

  • What is the general solution for (sin(2x))/(4sin(2x)-1)=1 ?

    The general solution for (sin(2x))/(4sin(2x)-1)=1 is x=(0.33983…)/2+pin,x= pi/2-(0.33983…)/2+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024