Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

64cosh^4(x)-64cosh^2(x)-9=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

64cosh4(x)−64cosh2(x)−9=0

Solution

x=21​ln(2),x=−21​ln(2)
+1
Degrees
x=19.85720…∘,x=−19.85720…∘
Solution steps
64cosh4(x)−64cosh2(x)−9=0
Rewrite using trig identities
64cosh4(x)−64cosh2(x)−9=0
Use the Hyperbolic identity: cosh(x)=2ex+e−x​64(2ex+e−x​)4−64(2ex+e−x​)2−9=0
64(2ex+e−x​)4−64(2ex+e−x​)2−9=0
64(2ex+e−x​)4−64(2ex+e−x​)2−9=0:x=21​ln(2),x=−21​ln(2)
64(2ex+e−x​)4−64(2ex+e−x​)2−9=0
Apply exponent rules
64(2ex+e−x​)4−64(2ex+e−x​)2−9=0
Apply exponent rule: abc=(ab)ce−x=(ex)−164(2ex+(ex)−1​)4−64(2ex+(ex)−1​)2−9=0
64(2ex+(ex)−1​)4−64(2ex+(ex)−1​)2−9=0
Rewrite the equation with ex=u64(2u+(u)−1​)4−64(2u+(u)−1​)2−9=0
Solve 64(2u+u−1​)4−64(2u+u−1​)2−9=0:u=−2​1​,u=−2​,u=2​,u=2​1​
64(2u+u−1​)4−64(2u+u−1​)2−9=0
Factor 64(2u+u−1​)4−64(2u+u−1​)2−9:(u22(u2+1)2​+1)(2​(u+u1​)+3)(2​(u+u1​)−3)
64(2u+u−1​)4−64(2u+u−1​)2−9
Let u=(2u+u−1​)2=64u2−64u−9
Factor 64u2−64u−9:(8u+1)(8u−9)
64u2−64u−9
Break the expression into groups
64u2−64u−9
Definition
Factors of 576:1,2,3,4,6,8,9,12,16,18,24,32,36,48,64,72,96,144,192,288,576
576
Divisors (Factors)
Find the Prime factors of 576:2,2,2,2,2,2,3,3
576
576divides by 2576=288⋅2=2⋅288
288divides by 2288=144⋅2=2⋅2⋅144
144divides by 2144=72⋅2=2⋅2⋅2⋅72
72divides by 272=36⋅2=2⋅2⋅2⋅2⋅36
36divides by 236=18⋅2=2⋅2⋅2⋅2⋅2⋅18
18divides by 218=9⋅2=2⋅2⋅2⋅2⋅2⋅2⋅9
9divides by 39=3⋅3=2⋅2⋅2⋅2⋅2⋅2⋅3⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅2⋅2⋅2⋅2⋅3⋅3
Multiply the prime factors of 576:4,8,16,32,64,6,12,24,48,96,192,9,18,36,72,144,288
2⋅2=42⋅2⋅2=8
4,8,16,32,64,6,12,24,48,96,192,9,18,36,72,144,288
4,8,16,32,64,6,12,24,48,96,192,9,18,36,72,144,288
Add the prime factors: 2,3
Add 1 and the number 576 itself1,576
The factors of 5761,2,3,4,6,8,9,12,16,18,24,32,36,48,64,72,96,144,192,288,576
Negative factors of 576:−1,−2,−3,−4,−6,−8,−9,−12,−16,−18,−24,−32,−36,−48,−64,−72,−96,−144,−192,−288,−576
Multiply the factors by −1 to get the negative factors−1,−2,−3,−4,−6,−8,−9,−12,−16,−18,−24,−32,−36,−48,−64,−72,−96,−144,−192,−288,−576
For every two factors such that u∗v=−576,check if u+v=−64
Check u=1,v=−576:u∗v=−576,u+v=−575⇒FalseCheck u=2,v=−288:u∗v=−576,u+v=−286⇒False
u=8,v=−72
Group into (ax2+ux)+(vx+c)(64u2+8u)+(−72u−9)
=(64u2+8u)+(−72u−9)
Factor out 8ufrom 64u2+8u:8u(8u+1)
64u2+8u
Apply exponent rule: ab+c=abacu2=uu=64uu+8u
Rewrite 64 as 8⋅8=8⋅8uu+8u
Factor out common term 8u=8u(8u+1)
Factor out −9from −72u−9:−9(8u+1)
−72u−9
Rewrite 72 as 9⋅8=−9⋅8u−9
Factor out common term −9=−9(8u+1)
=8u(8u+1)−9(8u+1)
Factor out common term 8u+1=(8u+1)(8u−9)
=(8u+1)(8u−9)
Substitute back u=(2u+u−1​)2=(8(2u+u−1​)2+1)(8(2u+u−1​)2−9)
Factor 8(2u+u−1​)2−9:(8​2u+u−1​+3)(8​2u+u−1​−3)
8(2u+u−1​)2−9
Rewrite 8(2u+u−1​)2−9 as (8​2u+u−1​)2−32
8(2u+u−1​)2−9
Apply radical rule: a=(a​)28=(8​)2=(8​)2(2u+u−1​)2−9
Rewrite 9 as 32=(8​)2(2u+u−1​)2−32
Apply exponent rule: ambm=(ab)m(8​)2(2u+u−1​)2=(8​2u+u−1​)2=(8​(2u+u−1​))2−32
=(8​(2u+u−1​))2−32
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(8​2u+u−1​)2−32=(8​2u+u−1​+3)(8​2u+u−1​−3)=(8​(2u+u−1​)+3)(8​(2u+u−1​)−3)
=(8(2u+u−1​)2+1)(8​(2u+u−1​)+3)(8​(2u+u−1​)−3)
Refine=(8(2u+u−1​)2+1)(22​(2u+u−1​)+3)(22​(2u+u−1​)−3)
Simplify (8(2u+u−1​)2+1)(22​(2u+u−1​)+3)(22​(2u+u−1​)−3):(u22(u2+1)2​+1)(2​(u+u1​)+3)(2​(u+u1​)−3)
(8(2u+u−1​)2+1)(22​(2u+u−1​)+3)(22​(2u+u−1​)−3)
Remove parentheses: (a)=a=(8(2u+u−1​)2+1)(22​2u+u−1​+3)(22​2u+u−1​−3)
8(2u+u−1​)2=u22(u2+1)2​
8(2u+u−1​)2
(2u+u−1​)2=22u2(u2+1)2​
(2u+u−1​)2
2u+u−1​=2uu2+1​
2u+u−1​
Apply exponent rule: a−1=a1​=2u+u1​​
Join u+u1​:uu2+1​
u+u1​
Convert element to fraction: u=uuu​=uuu​+u1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=uuu+1​
uu+1=u2+1
uu+1
uu=u2
uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=u1+1
Add the numbers: 1+1=2=u2
=u2+1
=uu2+1​
=2uu2+1​​
Apply the fraction rule: acb​​=c⋅ab​=u⋅2u2+1​
=(u⋅2u2+1​)2
Apply exponent rule: (ba​)c=bcac​=(2u)2(u2+1)2​
Apply exponent rule: (a⋅b)n=anbn(2u)2=22u2=22u2(u2+1)2​
=8⋅22u2(u2+1)2​
Multiply fractions: a⋅cb​=ca⋅b​=u2⋅22(u2+1)2⋅8​
Factor 8:23
Factor 8=23
=22u223(u2+1)2​
Cancel u2⋅22(u2+1)2⋅23​:u22(u2+1)2​
u2⋅22(u2+1)2⋅23​
Apply exponent rule: xbxa​=xa−b2223​=23−2=u223−2(u2+1)2​
Subtract the numbers: 3−2=1=u22(u2+1)2​
=u22(u2+1)2​
=(u22(u2+1)2​+1)(22​2u−1+u​+3)(22​2u−1+u​−3)
22​2u+u−1​=2​(u+u1​)
22​2u+u−1​
Multiply fractions: a⋅cb​=ca⋅b​=2(u+u−1)⋅22​​
Cancel the common factor: 2=(u+u−1)2​
Apply exponent rule: a−1=a1​=2​(u+u1​)
=(u22(u2+1)2​+1)(2​(u+u1​)+3)(22​2u−1+u​−3)
22​2u+u−1​=2​(u+u1​)
22​2u+u−1​
Multiply fractions: a⋅cb​=ca⋅b​=2(u+u−1)⋅22​​
Cancel the common factor: 2=(u+u−1)2​
Apply exponent rule: a−1=a1​=2​(u+u1​)
=(u22(u2+1)2​+1)(2​(u+u1​)+3)(2​(u+u1​)−3)
=(u22(u2+1)2​+1)(2​(u+u1​)+3)(2​(u+u1​)−3)
(u22(u2+1)2​+1)(2​(u+u1​)+3)(2​(u+u1​)−3)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0u22(u2+1)2​+1=0or2​(u+u1​)+3=0or2​(u+u1​)−3=0
Solve u22(u2+1)2​+1=0:No Solution for u∈R
u22(u2+1)2​+1=0
Multiply both sides by u2
u22(u2+1)2​+1=0
Multiply both sides by u2u22(u2+1)2​u2+1⋅u2=0⋅u2
Simplify
u22(u2+1)2​u2+1⋅u2=0⋅u2
Simplify u22(u2+1)2​u2:2(u2+1)2
u22(u2+1)2​u2
Multiply fractions: a⋅cb​=ca⋅b​=u22(u2+1)2u2​
Cancel the common factor: u2=2(u2+1)2
Simplify 1⋅u2:u2
1⋅u2
Multiply: 1⋅u2=u2=u2
Simplify 0⋅u2:0
0⋅u2
Apply rule 0⋅a=0=0
2(u2+1)2+u2=0
2(u2+1)2+u2=0
2(u2+1)2+u2=0
Solve 2(u2+1)2+u2=0:No Solution for u∈R
2(u2+1)2+u2=0
Expand 2(u2+1)2+u2:2u4+5u2+2
2(u2+1)2+u2
(u2+1)2=u4+2u2+1
(u2+1)2
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=u2,b=1
=(u2)2+2u2⋅1+12
Simplify (u2)2+2u2⋅1+12:u4+2u2+1
(u2)2+2u2⋅1+12
Apply rule 1a=112=1=(u2)2+2⋅1⋅u2+1
(u2)2=u4
(u2)2
Apply exponent rule: (ab)c=abc=u2⋅2
Multiply the numbers: 2⋅2=4=u4
2u2⋅1=2u2
2u2⋅1
Multiply the numbers: 2⋅1=2=2u2
=u4+2u2+1
=u4+2u2+1
=2(u4+2u2+1)+u2
Expand 2(u4+2u2+1):2u4+4u2+2
2(u4+2u2+1)
Distribute parentheses=2u4+2⋅2u2+2⋅1
Simplify 2u4+2⋅2u2+2⋅1:2u4+4u2+2
2u4+2⋅2u2+2⋅1
Multiply the numbers: 2⋅2=4=2u4+4u2+2⋅1
Multiply the numbers: 2⋅1=2=2u4+4u2+2
=2u4+4u2+2
=2u4+4u2+2+u2
Simplify 2u4+4u2+2+u2:2u4+5u2+2
2u4+4u2+2+u2
Group like terms=2u4+4u2+u2+2
Add similar elements: 4u2+u2=5u2=2u4+5u2+2
=2u4+5u2+2
2u4+5u2+2=0
Rewrite the equation with v=u2 and v2=u42v2+5v+2=0
Solve 2v2+5v+2=0:v=−21​,v=−2
2v2+5v+2=0
Solve with the quadratic formula
2v2+5v+2=0
Quadratic Equation Formula:
For a=2,b=5,c=2v1,2​=2⋅2−5±52−4⋅2⋅2​​
v1,2​=2⋅2−5±52−4⋅2⋅2​​
52−4⋅2⋅2​=3
52−4⋅2⋅2​
Multiply the numbers: 4⋅2⋅2=16=52−16​
52=25=25−16​
Subtract the numbers: 25−16=9=9​
Factor the number: 9=32=32​
Apply radical rule: 32​=3=3
v1,2​=2⋅2−5±3​
Separate the solutionsv1​=2⋅2−5+3​,v2​=2⋅2−5−3​
v=2⋅2−5+3​:−21​
2⋅2−5+3​
Add/Subtract the numbers: −5+3=−2=2⋅2−2​
Multiply the numbers: 2⋅2=4=4−2​
Apply the fraction rule: b−a​=−ba​=−42​
Cancel the common factor: 2=−21​
v=2⋅2−5−3​:−2
2⋅2−5−3​
Subtract the numbers: −5−3=−8=2⋅2−8​
Multiply the numbers: 2⋅2=4=4−8​
Apply the fraction rule: b−a​=−ba​=−48​
Divide the numbers: 48​=2=−2
The solutions to the quadratic equation are:v=−21​,v=−2
v=−21​,v=−2
Substitute back v=u2,solve for u
Solve u2=−21​:No Solution for u∈R
u2=−21​
x2 cannot be negative for x∈RNoSolutionforu∈R
Solve u2=−2:No Solution for u∈R
u2=−2
x2 cannot be negative for x∈RNoSolutionforu∈R
The solution is
NoSolutionforu∈R
NoSolutionforu∈R
Solve 2​(u+u1​)+3=0:u=−2​1​,u=−2​
2​(u+u1​)+3=0
Expand 2​(u+u1​)+3:2​u+u2​​+3
2​(u+u1​)+3
Expand 2​(u+u1​):2​u+u2​​
2​(u+u1​)
Apply the distributive law: a(b+c)=ab+aca=2​,b=u,c=u1​=2​u+2​u1​
2​u1​=u2​​
2​u1​
Multiply fractions: a⋅cb​=ca⋅b​=u1⋅2​​
Multiply: 1⋅2​=2​=u2​​
=2​u+u2​​
=2​u+u2​​+3
2​u+u2​​+3=0
Multiply both sides by u
2​u+u2​​+3=0
Multiply both sides by u2​uu+u2​​u+3u=0⋅u
Simplify
2​uu+u2​​u+3u=0⋅u
Simplify 2​uu:2​u2
2​uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=2​u1+1
Add the numbers: 1+1=2=2​u2
Simplify u2​​u:2​
u2​​u
Multiply fractions: a⋅cb​=ca⋅b​=u2​u​
Cancel the common factor: u=2​
Simplify 0⋅u:0
0⋅u
Apply rule 0⋅a=0=0
2​u2+2​+3u=0
2​u2+2​+3u=0
2​u2+2​+3u=0
Solve 2​u2+2​+3u=0:u=−2​1​,u=−2​
2​u2+2​+3u=0
Write in the standard form ax2+bx+c=02​u2+3u+2​=0
Solve with the quadratic formula
2​u2+3u+2​=0
Quadratic Equation Formula:
For a=2​,b=3,c=2​u1,2​=22​−3±32−42​2​​​
u1,2​=22​−3±32−42​2​​​
32−42​2​​=1
32−42​2​​
42​2​=8
42​2​
Apply radical rule: a​a​=a2​2​=2=4⋅2
Multiply the numbers: 4⋅2=8=8
=32−8​
32=9=9−8​
Subtract the numbers: 9−8=1=1​
Apply rule 1​=1=1
u1,2​=22​−3±1​
Separate the solutionsu1​=22​−3+1​,u2​=22​−3−1​
u=22​−3+1​:−2​1​
22​−3+1​
Add/Subtract the numbers: −3+1=−2=22​−2​
Apply the fraction rule: b−a​=−ba​=−22​2​
Divide the numbers: 22​=1=−2​1​
u=22​−3−1​:−2​
22​−3−1​
Subtract the numbers: −3−1=−4=22​−4​
Apply the fraction rule: b−a​=−ba​=−22​4​
Divide the numbers: 24​=2=2​2​
Apply radical rule: 2​=221​=221​2​
Apply exponent rule: xbxa​=xa−b221​21​=21−21​=21−21​
Subtract the numbers: 1−21​=21​=221​
Apply radical rule: 221​=2​=−2​
The solutions to the quadratic equation are:u=−2​1​,u=−2​
u=−2​1​,u=−2​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of 2​(u+u1​)+3 and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=−2​1​,u=−2​
Solve 2​(u+u1​)−3=0:u=2​,u=2​1​
2​(u+u1​)−3=0
Expand 2​(u+u1​)−3:2​u+u2​​−3
2​(u+u1​)−3
Expand 2​(u+u1​):2​u+u2​​
2​(u+u1​)
Apply the distributive law: a(b+c)=ab+aca=2​,b=u,c=u1​=2​u+2​u1​
2​u1​=u2​​
2​u1​
Multiply fractions: a⋅cb​=ca⋅b​=u1⋅2​​
Multiply: 1⋅2​=2​=u2​​
=2​u+u2​​
=2​u+u2​​−3
2​u+u2​​−3=0
Multiply both sides by u
2​u+u2​​−3=0
Multiply both sides by u2​uu+u2​​u−3u=0⋅u
Simplify
2​uu+u2​​u−3u=0⋅u
Simplify 2​uu:2​u2
2​uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=2​u1+1
Add the numbers: 1+1=2=2​u2
Simplify u2​​u:2​
u2​​u
Multiply fractions: a⋅cb​=ca⋅b​=u2​u​
Cancel the common factor: u=2​
Simplify 0⋅u:0
0⋅u
Apply rule 0⋅a=0=0
2​u2+2​−3u=0
2​u2+2​−3u=0
2​u2+2​−3u=0
Solve 2​u2+2​−3u=0:u=2​,u=2​1​
2​u2+2​−3u=0
Write in the standard form ax2+bx+c=02​u2−3u+2​=0
Solve with the quadratic formula
2​u2−3u+2​=0
Quadratic Equation Formula:
For a=2​,b=−3,c=2​u1,2​=22​−(−3)±(−3)2−42​2​​​
u1,2​=22​−(−3)±(−3)2−42​2​​​
(−3)2−42​2​​=1
(−3)2−42​2​​
(−3)2=32
(−3)2
Apply exponent rule: (−a)n=an,if n is even(−3)2=32=32
42​2​=8
42​2​
Apply radical rule: a​a​=a2​2​=2=4⋅2
Multiply the numbers: 4⋅2=8=8
=32−8​
32=9=9−8​
Subtract the numbers: 9−8=1=1​
Apply rule 1​=1=1
u1,2​=22​−(−3)±1​
Separate the solutionsu1​=22​−(−3)+1​,u2​=22​−(−3)−1​
u=22​−(−3)+1​:2​
22​−(−3)+1​
Apply rule −(−a)=a=22​3+1​
Add the numbers: 3+1=4=22​4​
Divide the numbers: 24​=2=2​2​
Apply radical rule: 2​=221​=221​2​
Apply exponent rule: xbxa​=xa−b221​21​=21−21​=21−21​
Subtract the numbers: 1−21​=21​=221​
Apply radical rule: 221​=2​=2​
u=22​−(−3)−1​:2​1​
22​−(−3)−1​
Apply rule −(−a)=a=22​3−1​
Subtract the numbers: 3−1=2=22​2​
Divide the numbers: 22​=1=2​1​
The solutions to the quadratic equation are:u=2​,u=2​1​
u=2​,u=2​1​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of 2​(u+u1​)−3 and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=2​,u=2​1​
Verify Solutions:u=−2​1​True,u=−2​True,u=2​True,u=2​1​True
Check the solutions by plugging them into 64(2u+u−1​)4−64(2u+u−1​)2−9=0
Remove the ones that don't agree with the equation.
Plug in u=−2​1​:True
64​2(−2​1​)+(−2​1​)−1​​4−64​2(−2​1​)+(−2​1​)−1​​2−9=0
64​2(−2​1​)+(−2​1​)−1​​4−64​2(−2​1​)+(−2​1​)−1​​2−9=0
64​2(−2​1​)+(−2​1​)−1​​4−64​2(−2​1​)+(−2​1​)−1​​2−9
Remove parentheses: (−a)=−a=64​2−2​1​+(−2​1​)−1​​4−64​2−2​1​+(−2​1​)−1​​2−9
64​2−2​1​+(−2​1​)−1​​4=81
64​2−2​1​+(−2​1​)−1​​4
​2−2​1​+(−2​1​)−1​​4=2634​
​2−2​1​+(−2​1​)−1​​4
2−2​1​+(−2​1​)−1​=−22​3​
2−2​1​+(−2​1​)−1​
−2​1​+(−2​1​)−1=−2​1​−(2​1​)−1
−2​1​+(−2​1​)−1
Apply exponent rule: (−a)n=−an,if n is odd(−2​1​)−1=−(2​1​)−1=−2​1​−(2​1​)−1
=2−2​1​−(2​1​)−1​
(2​1​)−1=2​
(2​1​)−1
Apply exponent rule: a−1=a1​=2​1​1​
Apply the fraction rule: cb​1​=bc​=12​​
Apply the fraction rule: 1a​=a=2​
=2−2​1​−2​​
Join −2​1​−2​:−2​3​
−2​1​−2​
Convert element to fraction: 2​=2​2​2​​=−2​1​−2​2​2​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2​−1−2​2​​
−1−2​2​=−3
−1−2​2​
Apply radical rule: a​a​=a2​2​=2=−1−2
Subtract the numbers: −1−2=−3=−3
=2​−3​
Apply the fraction rule: b−a​=−ba​=−2​3​
=2−2​3​​
Apply the fraction rule: b−a​=−ba​=−22​3​​
Apply the fraction rule: acb​​=c⋅ab​22​3​​=2​⋅23​=−2​⋅23​
=(−22​3​)4
Apply exponent rule: (−a)n=an,if n is even(−22​3​)4=(2​⋅23​)4=(2​⋅23​)4
Apply exponent rule: (ba​)c=bcac​=(22​)434​
Apply exponent rule: (a⋅b)n=anbn(22​)4=24(2​)4=24(2​)434​
(2​)4:22
Apply radical rule: a​=a21​=(221​)4
Apply exponent rule: (ab)c=abc=221​⋅4
21​⋅4=2
21​⋅4
Multiply fractions: a⋅cb​=ca⋅b​=21⋅4​
Multiply the numbers: 1⋅4=4=24​
Divide the numbers: 24​=2=2
=22
=22⋅2434​
22⋅24=26
22⋅24
Apply exponent rule: ab⋅ac=ab+c22⋅24=22+4=22+4
Add the numbers: 2+4=6=26
=2634​
=64⋅2634​
Multiply fractions: a⋅cb​=ca⋅b​=2634⋅64​
Factor 64:26
Factor 64=26
=2626⋅34​
Cancel the common factor: 26=34
34=81=81
64​2−2​1​+(−2​1​)−1​​2=72
64​2−2​1​+(−2​1​)−1​​2
​2−2​1​+(−2​1​)−1​​2=2332​
​2−2​1​+(−2​1​)−1​​2
2−2​1​+(−2​1​)−1​=−22​3​
2−2​1​+(−2​1​)−1​
−2​1​+(−2​1​)−1=−2​1​−(2​1​)−1
−2​1​+(−2​1​)−1
Apply exponent rule: (−a)n=−an,if n is odd(−2​1​)−1=−(2​1​)−1=−2​1​−(2​1​)−1
=2−2​1​−(2​1​)−1​
(2​1​)−1=2​
(2​1​)−1
Apply exponent rule: a−1=a1​=2​1​1​
Apply the fraction rule: cb​1​=bc​=12​​
Apply the fraction rule: 1a​=a=2​
=2−2​1​−2​​
Join −2​1​−2​:−2​3​
−2​1​−2​
Convert element to fraction: 2​=2​2​2​​=−2​1​−2​2​2​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2​−1−2​2​​
−1−2​2​=−3
−1−2​2​
Apply radical rule: a​a​=a2​2​=2=−1−2
Subtract the numbers: −1−2=−3=−3
=2​−3​
Apply the fraction rule: b−a​=−ba​=−2​3​
=2−2​3​​
Apply the fraction rule: b−a​=−ba​=−22​3​​
Apply the fraction rule: acb​​=c⋅ab​22​3​​=2​⋅23​=−2​⋅23​
=(−22​3​)2
Apply exponent rule: (−a)n=an,if n is even(−22​3​)2=(2​⋅23​)2=(2​⋅23​)2
Apply exponent rule: (ba​)c=bcac​=(22​)232​
Apply exponent rule: (a⋅b)n=anbn(22​)2=22(2​)2=22(2​)232​
(2​)2:2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
=2⋅2232​
2⋅22=23
2⋅22
Apply exponent rule: ab⋅ac=ab+c2⋅22=21+2=21+2
Add the numbers: 1+2=3=23
=2332​
=64⋅2332​
Multiply fractions: a⋅cb​=ca⋅b​=2332⋅64​
Factor 64:26
Factor 64=26
=2326⋅32​
Cancel 2332⋅26​:23⋅32
2332⋅26​
Apply exponent rule: xbxa​=xa−b2326​=26−3=32⋅26−3
Subtract the numbers: 6−3=3=23⋅32
=23⋅32
23=8=32⋅8
32=9=8⋅9
Multiply the numbers: 8⋅9=72=72
=81−72−9
Subtract the numbers: 81−72−9=0=0
0=0
True
Plug in u=−2​:True
64(2(−2​)+(−2​)−1​)4−64(2(−2​)+(−2​)−1​)2−9=0
64(2(−2​)+(−2​)−1​)4−64(2(−2​)+(−2​)−1​)2−9=0
64(2(−2​)+(−2​)−1​)4−64(2(−2​)+(−2​)−1​)2−9
Remove parentheses: (−a)=−a=64(2−2​+(−2​)−1​)4−64(2−2​+(−2​)−1​)2−9
64(2−2​+(−2​)−1​)4=81
64(2−2​+(−2​)−1​)4
(2−2​+(−2​)−1​)4=2634​
(2−2​+(−2​)−1​)4
2−2​+(−2​)−1​=−22​3​
2−2​+(−2​)−1​
−2​+(−2​)−1=−2​−(2​)−1
−2​+(−2​)−1
Apply exponent rule: (−a)n=−an,if n is odd(−2​)−1=−(2​)−1=−2​−(2​)−1
=2−2​−(2​)−1​
Apply exponent rule: a−1=a1​=2−2​−2​1​​
Join −2​−2​1​:−2​3​
−2​−2​1​
Convert element to fraction: 2​=2​2​2​​=−2​2​2​​−2​1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2​−2​2​−1​
−2​2​−1=−3
−2​2​−1
Apply radical rule: a​a​=a2​2​=2=−2−1
Subtract the numbers: −2−1=−3=−3
=2​−3​
Apply the fraction rule: b−a​=−ba​=−2​3​
=2−2​3​​
Apply the fraction rule: b−a​=−ba​=−22​3​​
Apply the fraction rule: acb​​=c⋅ab​22​3​​=2​⋅23​=−2​⋅23​
=(−22​3​)4
Apply exponent rule: (−a)n=an,if n is even(−22​3​)4=(2​⋅23​)4=(2​⋅23​)4
Apply exponent rule: (ba​)c=bcac​=(22​)434​
Apply exponent rule: (a⋅b)n=anbn(22​)4=24(2​)4=24(2​)434​
(2​)4:22
Apply radical rule: a​=a21​=(221​)4
Apply exponent rule: (ab)c=abc=221​⋅4
21​⋅4=2
21​⋅4
Multiply fractions: a⋅cb​=ca⋅b​=21⋅4​
Multiply the numbers: 1⋅4=4=24​
Divide the numbers: 24​=2=2
=22
=22⋅2434​
22⋅24=26
22⋅24
Apply exponent rule: ab⋅ac=ab+c22⋅24=22+4=22+4
Add the numbers: 2+4=6=26
=2634​
=64⋅2634​
Multiply fractions: a⋅cb​=ca⋅b​=2634⋅64​
Factor 64:26
Factor 64=26
=2626⋅34​
Cancel the common factor: 26=34
34=81=81
64(2−2​+(−2​)−1​)2=72
64(2−2​+(−2​)−1​)2
(2−2​+(−2​)−1​)2=2332​
(2−2​+(−2​)−1​)2
2−2​+(−2​)−1​=−22​3​
2−2​+(−2​)−1​
−2​+(−2​)−1=−2​−(2​)−1
−2​+(−2​)−1
Apply exponent rule: (−a)n=−an,if n is odd(−2​)−1=−(2​)−1=−2​−(2​)−1
=2−2​−(2​)−1​
Apply exponent rule: a−1=a1​=2−2​−2​1​​
Join −2​−2​1​:−2​3​
−2​−2​1​
Convert element to fraction: 2​=2​2​2​​=−2​2​2​​−2​1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2​−2​2​−1​
−2​2​−1=−3
−2​2​−1
Apply radical rule: a​a​=a2​2​=2=−2−1
Subtract the numbers: −2−1=−3=−3
=2​−3​
Apply the fraction rule: b−a​=−ba​=−2​3​
=2−2​3​​
Apply the fraction rule: b−a​=−ba​=−22​3​​
Apply the fraction rule: acb​​=c⋅ab​22​3​​=2​⋅23​=−2​⋅23​
=(−22​3​)2
Apply exponent rule: (−a)n=an,if n is even(−22​3​)2=(2​⋅23​)2=(2​⋅23​)2
Apply exponent rule: (ba​)c=bcac​=(22​)232​
Apply exponent rule: (a⋅b)n=anbn(22​)2=22(2​)2=22(2​)232​
(2​)2:2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
=2⋅2232​
2⋅22=23
2⋅22
Apply exponent rule: ab⋅ac=ab+c2⋅22=21+2=21+2
Add the numbers: 1+2=3=23
=2332​
=64⋅2332​
Multiply fractions: a⋅cb​=ca⋅b​=2332⋅64​
Factor 64:26
Factor 64=26
=2326⋅32​
Cancel 2332⋅26​:23⋅32
2332⋅26​
Apply exponent rule: xbxa​=xa−b2326​=26−3=32⋅26−3
Subtract the numbers: 6−3=3=23⋅32
=23⋅32
23=8=32⋅8
32=9=8⋅9
Multiply the numbers: 8⋅9=72=72
=81−72−9
Subtract the numbers: 81−72−9=0=0
0=0
True
Plug in u=2​:True
64(22​+(2​)−1​)4−64(22​+(2​)−1​)2−9=0
64(22​+(2​)−1​)4−64(22​+(2​)−1​)2−9=0
64(22​+(2​)−1​)4−64(22​+(2​)−1​)2−9
64(22​+(2​)−1​)4=81
64(22​+(2​)−1​)4
(22​+(2​)−1​)4=2634​
(22​+(2​)−1​)4
22​+(2​)−1​=22​3​
22​+(2​)−1​
Apply exponent rule: a−1=a1​=22​+2​1​​
Join 2​+2​1​:2​3​
2​+2​1​
Convert element to fraction: 2​=2​2​2​​=2​2​2​​+2​1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2​2​2​+1​
2​2​+1=3
2​2​+1
Apply radical rule: a​a​=a2​2​=2=2+1
Add the numbers: 2+1=3=3
=2​3​
=22​3​​
Apply the fraction rule: acb​​=c⋅ab​=2​⋅23​
=(2​⋅23​)4
Apply exponent rule: (ba​)c=bcac​=(22​)434​
Apply exponent rule: (a⋅b)n=anbn(22​)4=24(2​)4=24(2​)434​
(2​)4:22
Apply radical rule: a​=a21​=(221​)4
Apply exponent rule: (ab)c=abc=221​⋅4
21​⋅4=2
21​⋅4
Multiply fractions: a⋅cb​=ca⋅b​=21⋅4​
Multiply the numbers: 1⋅4=4=24​
Divide the numbers: 24​=2=2
=22
=22⋅2434​
22⋅24=26
22⋅24
Apply exponent rule: ab⋅ac=ab+c22⋅24=22+4=22+4
Add the numbers: 2+4=6=26
=2634​
=64⋅2634​
Multiply fractions: a⋅cb​=ca⋅b​=2634⋅64​
Factor 64:26
Factor 64=26
=2626⋅34​
Cancel the common factor: 26=34
34=81=81
64(22​+(2​)−1​)2=72
64(22​+(2​)−1​)2
(22​+(2​)−1​)2=2332​
(22​+(2​)−1​)2
22​+(2​)−1​=22​3​
22​+(2​)−1​
Apply exponent rule: a−1=a1​=22​+2​1​​
Join 2​+2​1​:2​3​
2​+2​1​
Convert element to fraction: 2​=2​2​2​​=2​2​2​​+2​1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2​2​2​+1​
2​2​+1=3
2​2​+1
Apply radical rule: a​a​=a2​2​=2=2+1
Add the numbers: 2+1=3=3
=2​3​
=22​3​​
Apply the fraction rule: acb​​=c⋅ab​=2​⋅23​
=(2​⋅23​)2
Apply exponent rule: (ba​)c=bcac​=(22​)232​
Apply exponent rule: (a⋅b)n=anbn(22​)2=22(2​)2=22(2​)232​
(2​)2:2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
=2⋅2232​
2⋅22=23
2⋅22
Apply exponent rule: ab⋅ac=ab+c2⋅22=21+2=21+2
Add the numbers: 1+2=3=23
=2332​
=64⋅2332​
Multiply fractions: a⋅cb​=ca⋅b​=2332⋅64​
Factor 64:26
Factor 64=26
=2326⋅32​
Cancel 2332⋅26​:23⋅32
2332⋅26​
Apply exponent rule: xbxa​=xa−b2326​=26−3=32⋅26−3
Subtract the numbers: 6−3=3=23⋅32
=23⋅32
23=8=32⋅8
32=9=8⋅9
Multiply the numbers: 8⋅9=72=72
=81−72−9
Subtract the numbers: 81−72−9=0=0
0=0
True
Plug in u=2​1​:True
64​2(2​1​)+(2​1​)−1​​4−64​2(2​1​)+(2​1​)−1​​2−9=0
64​2(2​1​)+(2​1​)−1​​4−64​2(2​1​)+(2​1​)−1​​2−9=0
64​2(2​1​)+(2​1​)−1​​4−64​2(2​1​)+(2​1​)−1​​2−9
Remove parentheses: (a)=a=64​22​1​+(2​1​)−1​​4−64​22​1​+(2​1​)−1​​2−9
64​22​1​+(2​1​)−1​​4=81
64​22​1​+(2​1​)−1​​4
​22​1​+(2​1​)−1​​4=2634​
​22​1​+(2​1​)−1​​4
22​1​+(2​1​)−1​=22​3​
22​1​+(2​1​)−1​
(2​1​)−1=2​
(2​1​)−1
Apply exponent rule: a−1=a1​=2​1​1​
Apply the fraction rule: cb​1​=bc​=12​​
Apply the fraction rule: 1a​=a=2​
=22​1​+2​​
Join 2​1​+2​:2​3​
2​1​+2​
Convert element to fraction: 2​=2​2​2​​=2​1​+2​2​2​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2​1+2​2​​
1+2​2​=3
1+2​2​
Apply radical rule: a​a​=a2​2​=2=1+2
Add the numbers: 1+2=3=3
=2​3​
=22​3​​
Apply the fraction rule: acb​​=c⋅ab​=2​⋅23​
=(2​⋅23​)4
Apply exponent rule: (ba​)c=bcac​=(22​)434​
Apply exponent rule: (a⋅b)n=anbn(22​)4=24(2​)4=24(2​)434​
(2​)4:22
Apply radical rule: a​=a21​=(221​)4
Apply exponent rule: (ab)c=abc=221​⋅4
21​⋅4=2
21​⋅4
Multiply fractions: a⋅cb​=ca⋅b​=21⋅4​
Multiply the numbers: 1⋅4=4=24​
Divide the numbers: 24​=2=2
=22
=22⋅2434​
22⋅24=26
22⋅24
Apply exponent rule: ab⋅ac=ab+c22⋅24=22+4=22+4
Add the numbers: 2+4=6=26
=2634​
=64⋅2634​
Multiply fractions: a⋅cb​=ca⋅b​=2634⋅64​
Factor 64:26
Factor 64=26
=2626⋅34​
Cancel the common factor: 26=34
34=81=81
64​22​1​+(2​1​)−1​​2=72
64​22​1​+(2​1​)−1​​2
​22​1​+(2​1​)−1​​2=2332​
​22​1​+(2​1​)−1​​2
22​1​+(2​1​)−1​=22​3​
22​1​+(2​1​)−1​
(2​1​)−1=2​
(2​1​)−1
Apply exponent rule: a−1=a1​=2​1​1​
Apply the fraction rule: cb​1​=bc​=12​​
Apply the fraction rule: 1a​=a=2​
=22​1​+2​​
Join 2​1​+2​:2​3​
2​1​+2​
Convert element to fraction: 2​=2​2​2​​=2​1​+2​2​2​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2​1+2​2​​
1+2​2​=3
1+2​2​
Apply radical rule: a​a​=a2​2​=2=1+2
Add the numbers: 1+2=3=3
=2​3​
=22​3​​
Apply the fraction rule: acb​​=c⋅ab​=2​⋅23​
=(2​⋅23​)2
Apply exponent rule: (ba​)c=bcac​=(22​)232​
Apply exponent rule: (a⋅b)n=anbn(22​)2=22(2​)2=22(2​)232​
(2​)2:2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
=2⋅2232​
2⋅22=23
2⋅22
Apply exponent rule: ab⋅ac=ab+c2⋅22=21+2=21+2
Add the numbers: 1+2=3=23
=2332​
=64⋅2332​
Multiply fractions: a⋅cb​=ca⋅b​=2332⋅64​
Factor 64:26
Factor 64=26
=2326⋅32​
Cancel 2332⋅26​:23⋅32
2332⋅26​
Apply exponent rule: xbxa​=xa−b2326​=26−3=32⋅26−3
Subtract the numbers: 6−3=3=23⋅32
=23⋅32
23=8=32⋅8
32=9=8⋅9
Multiply the numbers: 8⋅9=72=72
=81−72−9
Subtract the numbers: 81−72−9=0=0
0=0
True
The solutions areu=−2​1​,u=−2​,u=2​,u=2​1​
u=−2​1​,u=−2​,u=2​,u=2​1​
Substitute back u=ex,solve for x
Solve ex=−2​1​:No Solution for x∈R
ex=−2​1​
Apply exponent rules
ex=−2​1​
Apply exponent rule: ab1​=a−b2​1​=2−21​ex=−2−21​
ex=−2−21​
af(x) cannot be zero or negative for x∈RNoSolutionforx∈R
Solve ex=−2​:No Solution for x∈R
ex=−2​
af(x) cannot be zero or negative for x∈RNoSolutionforx∈R
Solve ex=2​:x=21​ln(2)
ex=2​
Apply exponent rules
ex=2​
Apply exponent rule: a​=a21​2​=221​ex=221​
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(221​)
Apply log rule: ln(ea)=aln(ex)=xx=ln(221​)
Apply log rule: ln(xa)=a⋅ln(x)ln(221​)=21​ln(2)x=21​ln(2)
x=21​ln(2)
Solve ex=2​1​:x=−21​ln(2)
ex=2​1​
Apply exponent rules
ex=2​1​
Apply exponent rule: ab1​=a−b2​1​=2−21​ex=2−21​
Apply exponent rule: 2−21​=2−21​ex=2−21​
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(2−21​)
Apply log rule: ln(ea)=aln(ex)=xx=ln(2−21​)
Apply log rule: ln(xa)=a⋅ln(x)ln(2−21​)=−21​ln(2)x=−21​ln(2)
x=−21​ln(2)
x=21​ln(2),x=−21​ln(2)
x=21​ln(2),x=−21​ln(2)

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(2θ)=0.4csc(θ/2)=sin(θ/2)sin(θ)=0.25cos(x)= 308/1475tan(θ)= 6/3

Frequently Asked Questions (FAQ)

  • What is the general solution for 64cosh^4(x)-64cosh^2(x)-9=0 ?

    The general solution for 64cosh^4(x)-64cosh^2(x)-9=0 is x= 1/2 ln(2),x=-1/2 ln(2)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024