Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(x)-sin(2x)+sin(3x)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(x)−sin(2x)+sin(3x)=0

Solution

x=2πn,x=π+2πn,x=3π​+2πn,x=35π​+2πn,x=2π​+2πn,x=23π​+2πn
+1
Degrees
x=0∘+360∘n,x=180∘+360∘n,x=60∘+360∘n,x=300∘+360∘n,x=90∘+360∘n,x=270∘+360∘n
Solution steps
sin(x)−sin(2x)+sin(3x)=0
Rewrite using trig identities
−sin(2x)+sin(3x)+sin(x)
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=−2sin(x)cos(x)+sin(3x)+sin(x)
sin(3x)=3sin(x)−4sin3(x)
sin(3x)
Rewrite using trig identities
sin(3x)
Rewrite as=sin(2x+x)
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=sin(2x)cos(x)+cos(2x)sin(x)
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=cos(2x)sin(x)+cos(x)2sin(x)cos(x)
Simplify cos(2x)sin(x)+cos(x)⋅2sin(x)cos(x):sin(x)cos(2x)+2cos2(x)sin(x)
cos(2x)sin(x)+cos(x)2sin(x)cos(x)
cos(x)⋅2sin(x)cos(x)=2cos2(x)sin(x)
cos(x)2sin(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=2sin(x)cos1+1(x)
Add the numbers: 1+1=2=2sin(x)cos2(x)
=sin(x)cos(2x)+2cos2(x)sin(x)
=sin(x)cos(2x)+2cos2(x)sin(x)
=sin(x)cos(2x)+2cos2(x)sin(x)
Use the Double Angle identity: cos(2x)=1−2sin2(x)=(1−2sin2(x))sin(x)+2cos2(x)sin(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=(1−2sin2(x))sin(x)+2(1−sin2(x))sin(x)
Expand (1−2sin2(x))sin(x)+2(1−sin2(x))sin(x):−4sin3(x)+3sin(x)
(1−2sin2(x))sin(x)+2(1−sin2(x))sin(x)
=sin(x)(1−2sin2(x))+2sin(x)(1−sin2(x))
Expand sin(x)(1−2sin2(x)):sin(x)−2sin3(x)
sin(x)(1−2sin2(x))
Apply the distributive law: a(b−c)=ab−aca=sin(x),b=1,c=2sin2(x)=sin(x)1−sin(x)2sin2(x)
=1sin(x)−2sin2(x)sin(x)
Simplify 1⋅sin(x)−2sin2(x)sin(x):sin(x)−2sin3(x)
1sin(x)−2sin2(x)sin(x)
1⋅sin(x)=sin(x)
1sin(x)
Multiply: 1⋅sin(x)=sin(x)=sin(x)
2sin2(x)sin(x)=2sin3(x)
2sin2(x)sin(x)
Apply exponent rule: ab⋅ac=ab+csin2(x)sin(x)=sin2+1(x)=2sin2+1(x)
Add the numbers: 2+1=3=2sin3(x)
=sin(x)−2sin3(x)
=sin(x)−2sin3(x)
=sin(x)−2sin3(x)+2(1−sin2(x))sin(x)
Expand 2sin(x)(1−sin2(x)):2sin(x)−2sin3(x)
2sin(x)(1−sin2(x))
Apply the distributive law: a(b−c)=ab−aca=2sin(x),b=1,c=sin2(x)=2sin(x)1−2sin(x)sin2(x)
=2⋅1sin(x)−2sin2(x)sin(x)
Simplify 2⋅1⋅sin(x)−2sin2(x)sin(x):2sin(x)−2sin3(x)
2⋅1sin(x)−2sin2(x)sin(x)
2⋅1⋅sin(x)=2sin(x)
2⋅1sin(x)
Multiply the numbers: 2⋅1=2=2sin(x)
2sin2(x)sin(x)=2sin3(x)
2sin2(x)sin(x)
Apply exponent rule: ab⋅ac=ab+csin2(x)sin(x)=sin2+1(x)=2sin2+1(x)
Add the numbers: 2+1=3=2sin3(x)
=2sin(x)−2sin3(x)
=2sin(x)−2sin3(x)
=sin(x)−2sin3(x)+2sin(x)−2sin3(x)
Simplify sin(x)−2sin3(x)+2sin(x)−2sin3(x):−4sin3(x)+3sin(x)
sin(x)−2sin3(x)+2sin(x)−2sin3(x)
Group like terms=−2sin3(x)−2sin3(x)+sin(x)+2sin(x)
Add similar elements: −2sin3(x)−2sin3(x)=−4sin3(x)=−4sin3(x)+sin(x)+2sin(x)
Add similar elements: sin(x)+2sin(x)=3sin(x)=−4sin3(x)+3sin(x)
=−4sin3(x)+3sin(x)
=−4sin3(x)+3sin(x)
=3sin(x)−4sin3(x)+sin(x)−2cos(x)sin(x)
Simplify=4sin(x)−4sin3(x)−2cos(x)sin(x)
4sin(x)−4sin3(x)−2cos(x)sin(x)=0
Factor 4sin(x)−4sin3(x)−2cos(x)sin(x):2sin(x)(2−2sin2(x)−cos(x))
4sin(x)−4sin3(x)−2cos(x)sin(x)
Apply exponent rule: ab+c=abacsin3(x)=sin(x)sin2(x)=4sin(x)−4sin(x)sin2(x)−2sin(x)cos(x)
Rewrite −4 as 2⋅2Rewrite 4 as 2⋅2=2⋅2sin(x)+2⋅2sin(x)sin2(x)−2sin(x)cos(x)
Factor out common term 2sin(x)=2sin(x)(2−2sin2(x)−cos(x))
2sin(x)(2−2sin2(x)−cos(x))=0
Solving each part separatelysin(x)=0or2−2sin2(x)−cos(x)=0
sin(x)=0:x=2πn,x=π+2πn
sin(x)=0
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
2−2sin2(x)−cos(x)=0:x=3π​+2πn,x=35π​+2πn,x=2π​+2πn,x=23π​+2πn
2−2sin2(x)−cos(x)=0
Rewrite using trig identities
2−cos(x)−2sin2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=2−cos(x)−2(1−cos2(x))
Simplify 2−cos(x)−2(1−cos2(x)):2cos2(x)−cos(x)
2−cos(x)−2(1−cos2(x))
Expand −2(1−cos2(x)):−2+2cos2(x)
−2(1−cos2(x))
Apply the distributive law: a(b−c)=ab−aca=−2,b=1,c=cos2(x)=−2⋅1−(−2)cos2(x)
Apply minus-plus rules−(−a)=a=−2⋅1+2cos2(x)
Multiply the numbers: 2⋅1=2=−2+2cos2(x)
=2−cos(x)−2+2cos2(x)
Simplify 2−cos(x)−2+2cos2(x):2cos2(x)−cos(x)
2−cos(x)−2+2cos2(x)
Group like terms=−cos(x)+2cos2(x)+2−2
2−2=0=2cos2(x)−cos(x)
=2cos2(x)−cos(x)
=2cos2(x)−cos(x)
−cos(x)+2cos2(x)=0
Solve by substitution
−cos(x)+2cos2(x)=0
Let: cos(x)=u−u+2u2=0
−u+2u2=0:u=21​,u=0
−u+2u2=0
Write in the standard form ax2+bx+c=02u2−u=0
Solve with the quadratic formula
2u2−u=0
Quadratic Equation Formula:
For a=2,b=−1,c=0u1,2​=2⋅2−(−1)±(−1)2−4⋅2⋅0​​
u1,2​=2⋅2−(−1)±(−1)2−4⋅2⋅0​​
(−1)2−4⋅2⋅0​=1
(−1)2−4⋅2⋅0​
(−1)2=1
(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
4⋅2⋅0=0
4⋅2⋅0
Apply rule 0⋅a=0=0
=1−0​
Subtract the numbers: 1−0=1=1​
Apply rule 1​=1=1
u1,2​=2⋅2−(−1)±1​
Separate the solutionsu1​=2⋅2−(−1)+1​,u2​=2⋅2−(−1)−1​
u=2⋅2−(−1)+1​:21​
2⋅2−(−1)+1​
Apply rule −(−a)=a=2⋅21+1​
Add the numbers: 1+1=2=2⋅22​
Multiply the numbers: 2⋅2=4=42​
Cancel the common factor: 2=21​
u=2⋅2−(−1)−1​:0
2⋅2−(−1)−1​
Apply rule −(−a)=a=2⋅21−1​
Subtract the numbers: 1−1=0=2⋅20​
Multiply the numbers: 2⋅2=4=40​
Apply rule a0​=0,a=0=0
The solutions to the quadratic equation are:u=21​,u=0
Substitute back u=cos(x)cos(x)=21​,cos(x)=0
cos(x)=21​,cos(x)=0
cos(x)=21​:x=3π​+2πn,x=35π​+2πn
cos(x)=21​
General solutions for cos(x)=21​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=3π​+2πn,x=35π​+2πn
x=3π​+2πn,x=35π​+2πn
cos(x)=0:x=2π​+2πn,x=23π​+2πn
cos(x)=0
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
Combine all the solutionsx=3π​+2πn,x=35π​+2πn,x=2π​+2πn,x=23π​+2πn
Combine all the solutionsx=2πn,x=π+2πn,x=3π​+2πn,x=35π​+2πn,x=2π​+2πn,x=23π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(x)=(-2sqrt(5))/5tan(2x-1)=03cos^2(x)-8cos(x)+4=049.55*sqrt(1-sin^2(θ))-30sin(θ)=1.225cos(2x)+sin(x)-1=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024