Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2tan(x)+cos(x)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2tan(x)+cos(x)=0

Solution

x=−0.42707…+2πn,x=π+0.42707…+2πn
+1
Degrees
x=−24.46980…∘+360∘n,x=204.46980…∘+360∘n
Solution steps
2tan(x)+cos(x)=0
Express with sin, cos2⋅cos(x)sin(x)​+cos(x)=0
Simplify 2⋅cos(x)sin(x)​+cos(x):cos(x)2sin(x)+cos2(x)​
2⋅cos(x)sin(x)​+cos(x)
Multiply 2⋅cos(x)sin(x)​:cos(x)2sin(x)​
2⋅cos(x)sin(x)​
Multiply fractions: a⋅cb​=ca⋅b​=cos(x)sin(x)⋅2​
=cos(x)2sin(x)​+cos(x)
Convert element to fraction: cos(x)=cos(x)cos(x)cos(x)​=cos(x)sin(x)⋅2​+cos(x)cos(x)cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)sin(x)⋅2+cos(x)cos(x)​
sin(x)⋅2+cos(x)cos(x)=2sin(x)+cos2(x)
sin(x)⋅2+cos(x)cos(x)
cos(x)cos(x)=cos2(x)
cos(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=cos1+1(x)
Add the numbers: 1+1=2=cos2(x)
=2sin(x)+cos2(x)
=cos(x)2sin(x)+cos2(x)​
cos(x)2sin(x)+cos2(x)​=0
g(x)f(x)​=0⇒f(x)=02sin(x)+cos2(x)=0
Subtract cos2(x) from both sides2sin(x)=−cos2(x)
Square both sides(2sin(x))2=(−cos2(x))2
Subtract (−cos2(x))2 from both sides4sin2(x)−cos4(x)=0
Factor 4sin2(x)−cos4(x):(2sin(x)+cos2(x))(2sin(x)−cos2(x))
4sin2(x)−cos4(x)
Rewrite 4sin2(x)−cos4(x) as (2sin(x))2−(cos2(x))2
4sin2(x)−cos4(x)
Rewrite 4 as 22=22sin2(x)−cos4(x)
Apply exponent rule: abc=(ab)ccos4(x)=(cos2(x))2=22sin2(x)−(cos2(x))2
Apply exponent rule: ambm=(ab)m22sin2(x)=(2sin(x))2=(2sin(x))2−(cos2(x))2
=(2sin(x))2−(cos2(x))2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(2sin(x))2−(cos2(x))2=(2sin(x)+cos2(x))(2sin(x)−cos2(x))=(2sin(x)+cos2(x))(2sin(x)−cos2(x))
(2sin(x)+cos2(x))(2sin(x)−cos2(x))=0
Solving each part separately2sin(x)+cos2(x)=0or2sin(x)−cos2(x)=0
2sin(x)+cos2(x)=0:x=arcsin(1−2​)+2πn,x=π+arcsin(−1+2​)+2πn
2sin(x)+cos2(x)=0
Rewrite using trig identities
cos2(x)+2sin(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=1−sin2(x)+2sin(x)
1−sin2(x)+2sin(x)=0
Solve by substitution
1−sin2(x)+2sin(x)=0
Let: sin(x)=u1−u2+2u=0
1−u2+2u=0:u=1−2​,u=1+2​
1−u2+2u=0
Write in the standard form ax2+bx+c=0−u2+2u+1=0
Solve with the quadratic formula
−u2+2u+1=0
Quadratic Equation Formula:
For a=−1,b=2,c=1u1,2​=2(−1)−2±22−4(−1)⋅1​​
u1,2​=2(−1)−2±22−4(−1)⋅1​​
22−4(−1)⋅1​=22​
22−4(−1)⋅1​
Apply rule −(−a)=a=22+4⋅1⋅1​
Multiply the numbers: 4⋅1⋅1=4=22+4​
22=4=4+4​
Add the numbers: 4+4=8=8​
Prime factorization of 8:23
8
8divides by 28=4⋅2=2⋅4
4divides by 24=2⋅2=2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2
=23
=23​
Apply exponent rule: ab+c=ab⋅ac=22⋅2​
Apply radical rule: =2​22​
Apply radical rule: 22​=2=22​
u1,2​=2(−1)−2±22​​
Separate the solutionsu1​=2(−1)−2+22​​,u2​=2(−1)−2−22​​
u=2(−1)−2+22​​:1−2​
2(−1)−2+22​​
Remove parentheses: (−a)=−a=−2⋅1−2+22​​
Multiply the numbers: 2⋅1=2=−2−2+22​​
Apply the fraction rule: −ba​=−ba​=−2−2+22​​
Cancel 2−2+22​​:2​−1
2−2+22​​
Factor −2+22​:2(−1+2​)
−2+22​
Rewrite as=−2⋅1+22​
Factor out common term 2=2(−1+2​)
=22(−1+2​)​
Divide the numbers: 22​=1=−1+2​
=−(2​−1)
Distribute parentheses=−(−1)−(2​)
Apply minus-plus rules−(−a)=a,−(a)=−a=1−2​
u=2(−1)−2−22​​:1+2​
2(−1)−2−22​​
Remove parentheses: (−a)=−a=−2⋅1−2−22​​
Multiply the numbers: 2⋅1=2=−2−2−22​​
Apply the fraction rule: −b−a​=ba​−2−22​=−(2+22​)=22+22​​
Factor 2+22​:2(1+2​)
2+22​
Rewrite as=2⋅1+22​
Factor out common term 2=2(1+2​)
=22(1+2​)​
Divide the numbers: 22​=1=1+2​
The solutions to the quadratic equation are:u=1−2​,u=1+2​
Substitute back u=sin(x)sin(x)=1−2​,sin(x)=1+2​
sin(x)=1−2​,sin(x)=1+2​
sin(x)=1−2​:x=arcsin(1−2​)+2πn,x=π+arcsin(−1+2​)+2πn
sin(x)=1−2​
Apply trig inverse properties
sin(x)=1−2​
General solutions for sin(x)=1−2​sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πnx=arcsin(1−2​)+2πn,x=π+arcsin(−1+2​)+2πn
x=arcsin(1−2​)+2πn,x=π+arcsin(−1+2​)+2πn
sin(x)=1+2​:No Solution
sin(x)=1+2​
−1≤sin(x)≤1NoSolution
Combine all the solutionsx=arcsin(1−2​)+2πn,x=π+arcsin(−1+2​)+2πn
2sin(x)−cos2(x)=0:x=arcsin(−1+2​)+2πn,x=π−arcsin(−1+2​)+2πn
2sin(x)−cos2(x)=0
Rewrite using trig identities
−cos2(x)+2sin(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=−(1−sin2(x))+2sin(x)
−(1−sin2(x)):−1+sin2(x)
−(1−sin2(x))
Distribute parentheses=−(1)−(−sin2(x))
Apply minus-plus rules−(−a)=a,−(a)=−a=−1+sin2(x)
=−1+sin2(x)+2sin(x)
−1+sin2(x)+2sin(x)=0
Solve by substitution
−1+sin2(x)+2sin(x)=0
Let: sin(x)=u−1+u2+2u=0
−1+u2+2u=0:u=−1+2​,u=−1−2​
−1+u2+2u=0
Write in the standard form ax2+bx+c=0u2+2u−1=0
Solve with the quadratic formula
u2+2u−1=0
Quadratic Equation Formula:
For a=1,b=2,c=−1u1,2​=2⋅1−2±22−4⋅1⋅(−1)​​
u1,2​=2⋅1−2±22−4⋅1⋅(−1)​​
22−4⋅1⋅(−1)​=22​
22−4⋅1⋅(−1)​
Apply rule −(−a)=a=22+4⋅1⋅1​
Multiply the numbers: 4⋅1⋅1=4=22+4​
22=4=4+4​
Add the numbers: 4+4=8=8​
Prime factorization of 8:23
8
8divides by 28=4⋅2=2⋅4
4divides by 24=2⋅2=2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2
=23
=23​
Apply exponent rule: ab+c=ab⋅ac=22⋅2​
Apply radical rule: =2​22​
Apply radical rule: 22​=2=22​
u1,2​=2⋅1−2±22​​
Separate the solutionsu1​=2⋅1−2+22​​,u2​=2⋅1−2−22​​
u=2⋅1−2+22​​:−1+2​
2⋅1−2+22​​
Multiply the numbers: 2⋅1=2=2−2+22​​
Factor −2+22​:2(−1+2​)
−2+22​
Rewrite as=−2⋅1+22​
Factor out common term 2=2(−1+2​)
=22(−1+2​)​
Divide the numbers: 22​=1=−1+2​
u=2⋅1−2−22​​:−1−2​
2⋅1−2−22​​
Multiply the numbers: 2⋅1=2=2−2−22​​
Factor −2−22​:−2(1+2​)
−2−22​
Rewrite as=−2⋅1−22​
Factor out common term 2=−2(1+2​)
=−22(1+2​)​
Divide the numbers: 22​=1=−(1+2​)
Negate −(1+2​)=−1−2​=−1−2​
The solutions to the quadratic equation are:u=−1+2​,u=−1−2​
Substitute back u=sin(x)sin(x)=−1+2​,sin(x)=−1−2​
sin(x)=−1+2​,sin(x)=−1−2​
sin(x)=−1+2​:x=arcsin(−1+2​)+2πn,x=π−arcsin(−1+2​)+2πn
sin(x)=−1+2​
Apply trig inverse properties
sin(x)=−1+2​
General solutions for sin(x)=−1+2​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin(−1+2​)+2πn,x=π−arcsin(−1+2​)+2πn
x=arcsin(−1+2​)+2πn,x=π−arcsin(−1+2​)+2πn
sin(x)=−1−2​:No Solution
sin(x)=−1−2​
−1≤sin(x)≤1NoSolution
Combine all the solutionsx=arcsin(−1+2​)+2πn,x=π−arcsin(−1+2​)+2πn
Combine all the solutionsx=arcsin(1−2​)+2πn,x=π+arcsin(−1+2​)+2πn,x=arcsin(−1+2​)+2πn,x=π−arcsin(−1+2​)+2πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into 2tan(x)+cos(x)=0
Remove the ones that don't agree with the equation.
Check the solution arcsin(1−2​)+2πn:True
arcsin(1−2​)+2πn
Plug in n=1arcsin(1−2​)+2π1
For 2tan(x)+cos(x)=0plug inx=arcsin(1−2​)+2π12tan(arcsin(1−2​)+2π1)+cos(arcsin(1−2​)+2π1)=0
Refine0=0
⇒True
Check the solution π+arcsin(−1+2​)+2πn:True
π+arcsin(−1+2​)+2πn
Plug in n=1π+arcsin(−1+2​)+2π1
For 2tan(x)+cos(x)=0plug inx=π+arcsin(−1+2​)+2π12tan(π+arcsin(−1+2​)+2π1)+cos(π+arcsin(−1+2​)+2π1)=0
Refine0=0
⇒True
Check the solution arcsin(−1+2​)+2πn:False
arcsin(−1+2​)+2πn
Plug in n=1arcsin(−1+2​)+2π1
For 2tan(x)+cos(x)=0plug inx=arcsin(−1+2​)+2π12tan(arcsin(−1+2​)+2π1)+cos(arcsin(−1+2​)+2π1)=0
Refine1.82035…=0
⇒False
Check the solution π−arcsin(−1+2​)+2πn:False
π−arcsin(−1+2​)+2πn
Plug in n=1π−arcsin(−1+2​)+2π1
For 2tan(x)+cos(x)=0plug inx=π−arcsin(−1+2​)+2π12tan(π−arcsin(−1+2​)+2π1)+cos(π−arcsin(−1+2​)+2π1)=0
Refine−1.82035…=0
⇒False
x=arcsin(1−2​)+2πn,x=π+arcsin(−1+2​)+2πn
Show solutions in decimal formx=−0.42707…+2πn,x=π+0.42707…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(2x)+sec(2x)=115tan(x)-4=03tan(x)sin(x)-2tan(x)=0csc^2(x)+3csc(x)-4=0cos^2(φ)=sin^2(φ)

Frequently Asked Questions (FAQ)

  • What is the general solution for 2tan(x)+cos(x)=0 ?

    The general solution for 2tan(x)+cos(x)=0 is x=-0.42707…+2pin,x=pi+0.42707…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024