Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

arctan(2x)+arctan(3x)= pi/4

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

arctan(2x)+arctan(3x)=4π​

Solution

x=61​
Solution steps
arctan(2x)+arctan(3x)=4π​
Rewrite using trig identities
arctan(2x)+arctan(3x)
Use the Sum to Product identity: arctan(s)+arctan(t)=arctan(1−sts+t​)=arctan(1−2x⋅3x2x+3x​)
arctan(1−2x⋅3x2x+3x​)=4π​
Apply trig inverse properties
arctan(1−2x⋅3x2x+3x​)=4π​
arctan(x)=a⇒x=tan(a)1−2x⋅3x2x+3x​=tan(4π​)
tan(4π​)=1
tan(4π​)
Use the following trivial identity:tan(4π​)=1
tan(4π​)
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
=1
=1
1−2x⋅3x2x+3x​=1
1−2x⋅3x2x+3x​=1
Solve 1−2x⋅3x2x+3x​=1:x=−1,x=61​
1−2x⋅3x2x+3x​=1
Simplify 1−2x⋅3x2x+3x​:1−6x25x​
1−2x⋅3x2x+3x​
Add similar elements: 2x+3x=5x=1−2⋅3xx5x​
1−2x⋅3x=1−6x2
1−2x⋅3x
2x⋅3x=6x2
2x⋅3x
Multiply the numbers: 2⋅3=6=6xx
Apply exponent rule: ab⋅ac=ab+cxx=x1+1=6x1+1
Add the numbers: 1+1=2=6x2
=1−6x2
=1−6x25x​
1−6x25x​=1
Multiply both sides by 1−6x2
1−6x25x​=1
Multiply both sides by 1−6x21−6x25x​(1−6x2)=1⋅(1−6x2)
Simplify
1−6x25x​(1−6x2)=1⋅(1−6x2)
Simplify 1−6x25x​(1−6x2):5x
1−6x25x​(1−6x2)
Multiply fractions: a⋅cb​=ca⋅b​=1−6x25x(1−6x2)​
Cancel the common factor: 1−6x2=5x
Simplify 1⋅(1−6x2):1−6x2
1⋅(1−6x2)
Multiply: 1⋅(1−6x2)=(1−6x2)=(1−6x2)
Remove parentheses: (a)=a=1−6x2
5x=1−6x2
5x=1−6x2
5x=1−6x2
Solve 5x=1−6x2:x=−1,x=61​
5x=1−6x2
Switch sides1−6x2=5x
Move 5xto the left side
1−6x2=5x
Subtract 5x from both sides1−6x2−5x=5x−5x
Simplify1−6x2−5x=0
1−6x2−5x=0
Write in the standard form ax2+bx+c=0−6x2−5x+1=0
Solve with the quadratic formula
−6x2−5x+1=0
Quadratic Equation Formula:
For a=−6,b=−5,c=1x1,2​=2(−6)−(−5)±(−5)2−4(−6)⋅1​​
x1,2​=2(−6)−(−5)±(−5)2−4(−6)⋅1​​
(−5)2−4(−6)⋅1​=7
(−5)2−4(−6)⋅1​
Apply rule −(−a)=a=(−5)2+4⋅6⋅1​
Apply exponent rule: (−a)n=an,if n is even(−5)2=52=52+4⋅6⋅1​
Multiply the numbers: 4⋅6⋅1=24=52+24​
52=25=25+24​
Add the numbers: 25+24=49=49​
Factor the number: 49=72=72​
Apply radical rule: 72​=7=7
x1,2​=2(−6)−(−5)±7​
Separate the solutionsx1​=2(−6)−(−5)+7​,x2​=2(−6)−(−5)−7​
x=2(−6)−(−5)+7​:−1
2(−6)−(−5)+7​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅65+7​
Add the numbers: 5+7=12=−2⋅612​
Multiply the numbers: 2⋅6=12=−1212​
Apply the fraction rule: −ba​=−ba​=−1212​
Apply rule aa​=1=−1
x=2(−6)−(−5)−7​:61​
2(−6)−(−5)−7​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅65−7​
Subtract the numbers: 5−7=−2=−2⋅6−2​
Multiply the numbers: 2⋅6=12=−12−2​
Apply the fraction rule: −b−a​=ba​=122​
Cancel the common factor: 2=61​
The solutions to the quadratic equation are:x=−1,x=61​
x=−1,x=61​
Verify Solutions
Find undefined (singularity) points:x=6​1​,x=−6​1​
Take the denominator(s) of 1−2x⋅3x2x+3x​ and compare to zero
Solve 1−2x⋅3x=0:x=6​1​,x=−6​1​
1−2x⋅3x=0
Move 1to the right side
1−2x⋅3x=0
Subtract 1 from both sides1−2x⋅3x−1=0−1
Simplify−2x⋅3x=−1
−2x⋅3x=−1
Simplify−6x2=−1
Divide both sides by −6−6−6x2​=−6−1​
x2=61​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
x=61​​,x=−61​​
61​​=6​1​
61​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=6​1​​
Apply radical rule: 1​=11​=1=6​1​
−61​​=−6​1​
−61​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=−6​1​​
Apply radical rule: 1​=11​=1=−6​1​
x=6​1​,x=−6​1​
The following points are undefinedx=6​1​,x=−6​1​
Combine undefined points with solutions:
x=−1,x=61​
x=−1,x=61​
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into arctan(2x)+arctan(3x)=4π​
Remove the ones that don't agree with the equation.
Check the solution −1:False
−1
Plug in n=1−1
For arctan(2x)+arctan(3x)=4π​plug inx=−1arctan(2(−1))+arctan(3(−1))=4π​
Refine−2.35619…=0.78539…
⇒False
Check the solution 61​:True
61​
Plug in n=161​
For arctan(2x)+arctan(3x)=4π​plug inx=61​arctan(2⋅61​)+arctan(3⋅61​)=4π​
Refine0.78539…=0.78539…
⇒True
x=61​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2sec^2(x)-5sec(x)-2=02sin(t)cos(t)=sin(t)tan(2x)-1/(tan(x))=04sin(x)=cos(x)+2tan(β+10)=cot(2β-10)

Frequently Asked Questions (FAQ)

  • What is the general solution for arctan(2x)+arctan(3x)= pi/4 ?

    The general solution for arctan(2x)+arctan(3x)= pi/4 is x= 1/6
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024