Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(x+25)sec(65-x)=1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(x+25∘)sec(65∘−x)=1

Solution

x=20∘−180∘n
+1
Radians
x=9π​−πn
Solution steps
cos(x+25∘)sec(65∘−x)=1
Subtract 1 from both sidescos(x+25∘)sec(65∘−x)−1=0
Simplify cos(x+25∘)sec(65∘−x)−1:cos(3636x+900∘​)sec(362340∘−36x​)−1
cos(x+25∘)sec(65∘−x)−1
cos(x+25∘)sec(65∘−x)=cos(3636x+900∘​)sec(362340∘−36x​)
cos(x+25∘)sec(65∘−x)
Join x+25∘:3636x+900∘​
x+25∘
Convert element to fraction: x=36x36​=36x⋅36​+25∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=36x⋅36+900∘​
=cos(3636x+900∘​)sec(−x+65∘)
Join 65∘−x:362340∘−36x​
65∘−x
Convert element to fraction: x=36x36​=65∘−36x⋅36​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=362340∘−x⋅36​
=cos(3636x+900∘​)sec(36−36x+2340∘​)
=cos(3636x+900∘​)sec(36−36x+2340∘​)−1
cos(3636x+900∘​)sec(362340∘−36x​)−1=0
Rewrite using trig identities
−1+cos(3636x+900∘​)sec(362340∘−36x​)
Use the following identity: cos(x)=sin(90∘−x)=−1+sin(90∘−3636x+900∘​)sec(362340∘−36x​)
Join 90∘−3636x+900∘​:36−36x+2340∘​
90∘−3636x+900∘​
Least Common Multiplier of 2,36:36
2,36
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 36:2⋅2⋅3⋅3
36
36divides by 236=18⋅2=2⋅18
18divides by 218=9⋅2=2⋅2⋅9
9divides by 39=3⋅3=2⋅2⋅3⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3⋅3
Multiply each factor the greatest number of times it occurs in either 2 or 36=2⋅2⋅3⋅3
Multiply the numbers: 2⋅2⋅3⋅3=36=36
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 36
For 90∘:multiply the denominator and numerator by 1890∘=2⋅18180∘18​=90∘
=90∘−3636x+900∘​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=36180∘18−(36x+900∘)​
Expand 180∘18−(36x+900∘):−36x+2340∘
180∘18−(36x+900∘)
=3240∘−(36x+900∘)
−(36x+900∘):−36x−900∘
−(36x+900∘)
Distribute parentheses=−(36x)−(900∘)
Apply minus-plus rules+(−a)=−a=−36x−900∘
=180∘18−36x−900∘
Simplify 180∘18−36x−900∘:−36x+2340∘
180∘18−36x−900∘
Group like terms=−36x+3240∘−900∘
Add similar elements: 3240∘−900∘=2340∘=−36x+2340∘
=−36x+2340∘
=36−36x+2340∘​
=−1+sin(36−36x+2340∘​)sec(362340∘−36x​)
sec(362340∘−36x​)sin(362340∘−36x​)=tan(362340∘−36x​)
sec(362340∘−36x​)sin(362340∘−36x​)
Express with sin, cos
sec(362340∘−36x​)sin(362340∘−36x​)
Use the basic trigonometric identity: sec(362340∘−36x​)=cos(362340∘−36x​)1​=cos(362340∘−36x​)1​sin(362340∘−36x​)
Simplify cos(362340∘−36x​)1​sin(362340∘−36x​):cos(362340∘−36x​)sin(362340∘−36x​)​
cos(362340∘−36x​)1​sin(362340∘−36x​)
Multiply fractions: a⋅cb​=ca⋅b​=cos(362340∘−36x​)1sin(362340∘−36x​)​
Multiply: 1⋅sin(362340∘−36x​)=sin(362340∘−36x​)=cos(362340∘−36x​)sin(362340∘−36x​)​
=cos(362340∘−36x​)sin(362340∘−36x​)​
=cos(362340∘−36x​)sin(362340∘−36x​)​
Use the basic trigonometric identity: cos(362340∘−36x​)sin(362340∘−36x​)​=tan(362340∘−36x​)=tan(362340∘−36x​)
=−1+tan(362340∘−36x​)
−1+tan(362340∘−36x​)=0
Move 1to the right side
−1+tan(362340∘−36x​)=0
Add 1 to both sides−1+tan(362340∘−36x​)+1=0+1
Simplifytan(362340∘−36x​)=1
tan(362340∘−36x​)=1
General solutions for tan(362340∘−36x​)=1
tan(x) periodicity table with 180∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​tan(x)033​​13​±∞−3​−1−33​​​​
362340∘−36x​=45∘+180∘n
362340∘−36x​=45∘+180∘n
Solve 362340∘−36x​=45∘+180∘n:x=20∘−180∘n
362340∘−36x​=45∘+180∘n
Multiply both sides by 36
362340∘−36x​=45∘+180∘n
Multiply both sides by 363636(2340∘−36x)​=36⋅45∘+6480∘n
Simplify
3636(2340∘−36x)​=36⋅45∘+6480∘n
Simplify 3636(2340∘−36x)​:2340∘−36x
3636(2340∘−36x)​
Divide the numbers: 3636​=1=2340∘−36x
Simplify 36⋅45∘+6480∘n:1620∘+6480∘n
36⋅45∘+6480∘n
36⋅45∘=1620∘
36⋅45∘
Multiply fractions: a⋅cb​=ca⋅b​=1620∘
Divide the numbers: 436​=9=1620∘
=1620∘+6480∘n
2340∘−36x=1620∘+6480∘n
2340∘−36x=1620∘+6480∘n
2340∘−36x=1620∘+6480∘n
Move 2340∘to the right side
2340∘−36x=1620∘+6480∘n
Subtract 2340∘ from both sides2340∘−36x−2340∘=1620∘+6480∘n−2340∘
Simplify−36x=−720∘+6480∘n
−36x=−720∘+6480∘n
Divide both sides by −36
−36x=−720∘+6480∘n
Divide both sides by −36−36−36x​=−−36720∘​+−366480∘n​
Simplify
−36−36x​=−−36720∘​+−366480∘n​
Simplify −36−36x​:x
−36−36x​
Apply the fraction rule: −b−a​=ba​=3636x​
Divide the numbers: 3636​=1=x
Simplify −−36720∘​+−366480∘n​:20∘−180∘n
−−36720∘​+−366480∘n​
−36720∘​=−20∘
−36720∘​
Apply the fraction rule: −ba​=−ba​=−20∘
Cancel the common factor: 4=−20∘
−366480∘n​=−180∘n
−366480∘n​
Apply the fraction rule: −ba​=−ba​=−366480∘n​
Divide the numbers: 3636​=1=−180∘n
=−(−20∘)−180∘n
Apply rule −(−a)=a=20∘−180∘n
x=20∘−180∘n
x=20∘−180∘n
x=20∘−180∘n
x=20∘−180∘n

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan^2(x)-5tan(x)-9=0arctan(t)= pi/4tan(x)=-24/7sec(θ)(sec(θ)-1)=2(sin(74))/8 =(sin(x))/4

Frequently Asked Questions (FAQ)

  • What is the general solution for cos(x+25)sec(65-x)=1 ?

    The general solution for cos(x+25)sec(65-x)=1 is x=20-180n
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024