Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

6193cos(x)+2880cos(2x)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

6193cos(x)+2880cos(2x)=0

Solution

x=1.21251…+2πn,x=2π−1.21251…+2πn
+1
Degrees
x=69.47171…∘+360∘n,x=290.52828…∘+360∘n
Solution steps
6193cos(x)+2880cos(2x)=0
Rewrite using trig identities
2880cos(2x)+6193cos(x)
Use the Double Angle identity: cos(2x)=2cos2(x)−1=2880(2cos2(x)−1)+6193cos(x)
(−1+2cos2(x))⋅2880+6193cos(x)=0
Solve by substitution
(−1+2cos2(x))⋅2880+6193cos(x)=0
Let: cos(x)=u(−1+2u2)⋅2880+6193u=0
(−1+2u2)⋅2880+6193u=0:u=11520−6193+104708449​​,u=11520−6193−104708449​​
(−1+2u2)⋅2880+6193u=0
Expand (−1+2u2)⋅2880+6193u:−2880+5760u2+6193u
(−1+2u2)⋅2880+6193u
=2880(−1+2u2)+6193u
Expand 2880(−1+2u2):−2880+5760u2
2880(−1+2u2)
Apply the distributive law: a(b+c)=ab+aca=2880,b=−1,c=2u2=2880(−1)+2880⋅2u2
Apply minus-plus rules+(−a)=−a=−2880⋅1+2880⋅2u2
Simplify −2880⋅1+2880⋅2u2:−2880+5760u2
−2880⋅1+2880⋅2u2
Multiply the numbers: 2880⋅1=2880=−2880+2880⋅2u2
Multiply the numbers: 2880⋅2=5760=−2880+5760u2
=−2880+5760u2
=−2880+5760u2+6193u
−2880+5760u2+6193u=0
Divide both sides by 5760−57602880​+57605760u2​+57606193u​=57600​
Write in the standard form ax2+bx+c=0u2+57606193u​−21​=0
Solve with the quadratic formula
u2+57606193u​−21​=0
Quadratic Equation Formula:
For a=1,b=57606193​,c=−21​u1,2​=2⋅1−57606193​±(57606193​)2−4⋅1⋅(−21​)​​
u1,2​=2⋅1−57606193​±(57606193​)2−4⋅1⋅(−21​)​​
(57606193​)2−4⋅1⋅(−21​)​=5760104708449​​
(57606193​)2−4⋅1⋅(−21​)​
Apply rule −(−a)=a=(57606193​)2+4⋅1⋅21​​
(57606193​)2=5760261932​
(57606193​)2
Apply exponent rule: (ba​)c=bcac​=5760261932​
4⋅1⋅21​=2
4⋅1⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=1⋅21⋅4​
21⋅4​=2
21⋅4​
Multiply the numbers: 1⋅4=4=24​
Divide the numbers: 24​=2=2
=1⋅2
Multiply the numbers: 1⋅2=2=2
=5760261932​+2​
5760261932​=3317760038353249​
5760261932​
61932=38353249=5760238353249​
57602=33177600=3317760038353249​
=3317760038353249​+2​
Join 3317760038353249​+2:33177600104708449​
3317760038353249​+2
Convert element to fraction: 2=331776002⋅33177600​=331776002⋅33177600​+3317760038353249​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=331776002⋅33177600+38353249​
2⋅33177600+38353249=104708449
2⋅33177600+38353249
Multiply the numbers: 2⋅33177600=66355200=66355200+38353249
Add the numbers: 66355200+38353249=104708449=104708449
=33177600104708449​
=33177600104708449​​
Apply radical rule: assuming a≥0,b≥0=33177600​104708449​​
33177600​=5760
33177600​
Factor the number: 33177600=57602=57602​
Apply radical rule: 57602​=5760=5760
=5760104708449​​
u1,2​=2⋅1−57606193​±5760104708449​​​
Separate the solutionsu1​=2⋅1−57606193​+5760104708449​​​,u2​=2⋅1−57606193​−5760104708449​​​
u=2⋅1−57606193​+5760104708449​​​:11520−6193+104708449​​
2⋅1−57606193​+5760104708449​​​
Combine the fractions −57606193​+5760104708449​​:5760−6193+104708449​​
Apply rule ca​±cb​=ca±b​=5760−6193+104708449​​
=2⋅15760−6193+104708449​​​
Multiply the numbers: 2⋅1=2=25760−6193+104708449​​​
Apply the fraction rule: acb​​=c⋅ab​=5760⋅2−6193+104708449​​
Multiply the numbers: 5760⋅2=11520=11520−6193+104708449​​
u=2⋅1−57606193​−5760104708449​​​:11520−6193−104708449​​
2⋅1−57606193​−5760104708449​​​
Combine the fractions −57606193​−5760104708449​​:5760−6193−104708449​​
Apply rule ca​±cb​=ca±b​=5760−6193−104708449​​
=2⋅15760−6193−104708449​​​
Multiply the numbers: 2⋅1=2=25760−6193−104708449​​​
Apply the fraction rule: acb​​=c⋅ab​=5760⋅2−6193−104708449​​
Multiply the numbers: 5760⋅2=11520=11520−6193−104708449​​
The solutions to the quadratic equation are:u=11520−6193+104708449​​,u=11520−6193−104708449​​
Substitute back u=cos(x)cos(x)=11520−6193+104708449​​,cos(x)=11520−6193−104708449​​
cos(x)=11520−6193+104708449​​,cos(x)=11520−6193−104708449​​
cos(x)=11520−6193+104708449​​:x=arccos(11520−6193+104708449​​)+2πn,x=2π−arccos(11520−6193+104708449​​)+2πn
cos(x)=11520−6193+104708449​​
Apply trig inverse properties
cos(x)=11520−6193+104708449​​
General solutions for cos(x)=11520−6193+104708449​​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(11520−6193+104708449​​)+2πn,x=2π−arccos(11520−6193+104708449​​)+2πn
x=arccos(11520−6193+104708449​​)+2πn,x=2π−arccos(11520−6193+104708449​​)+2πn
cos(x)=11520−6193−104708449​​:No Solution
cos(x)=11520−6193−104708449​​
−1≤cos(x)≤1NoSolution
Combine all the solutionsx=arccos(11520−6193+104708449​​)+2πn,x=2π−arccos(11520−6193+104708449​​)+2πn
Show solutions in decimal formx=1.21251…+2πn,x=2π−1.21251…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(x)= 6/11sin(2x)=0.352cos(t)+sin(2t)=0cos(x)=0.766sin(θ)=-sin(θ)cos(θ)

Frequently Asked Questions (FAQ)

  • What is the general solution for 6193cos(x)+2880cos(2x)=0 ?

    The general solution for 6193cos(x)+2880cos(2x)=0 is x=1.21251…+2pin,x=2pi-1.21251…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024