Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(sin(2x)}{sin(\frac{7pi)/2-x)}=sqrt(2)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(27π​−x)sin(2x)​=2​

Solution

x=45π​+2πn,x=47π​+2πn
+1
Degrees
x=225∘+360∘n,x=315∘+360∘n
Solution steps
sin(27π​−x)sin(2x)​=2​
Rewrite using trig identities
sin(27π​−x)sin(2x)​=2​
Rewrite using trig identities
sin(27π​−x)
Use the Angle Difference identity: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=sin(27π​)cos(x)−cos(27π​)sin(x)
Simplify sin(27π​)cos(x)−cos(27π​)sin(x):−cos(x)
sin(27π​)cos(x)−cos(27π​)sin(x)
sin(27π​)cos(x)=−cos(x)
sin(27π​)cos(x)
sin(27π​)=−1
sin(27π​)
sin(27π​)=sin(23π​)
sin(27π​)
Rewrite 27π​ as 2π+23π​=sin(2π+23π​)
Apply the periodicity of sin: sin(x+2π)=sin(x)sin(2π+23π​)=sin(23π​)=sin(23π​)
=sin(23π​)
Rewrite using trig identities:sin(π)cos(2π​)+cos(π)sin(2π​)
sin(23π​)
Write sin(23π​)as sin(π+2π​)=sin(π+2π​)
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=sin(π)cos(2π​)+cos(π)sin(2π​)
=sin(π)cos(2π​)+cos(π)sin(2π​)
Use the following trivial identity:sin(π)=0
sin(π)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=0
Use the following trivial identity:cos(2π​)=0
cos(2π​)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=0
Use the following trivial identity:cos(π)=(−1)
cos(π)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=(−1)
Use the following trivial identity:sin(2π​)=1
sin(2π​)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=1
=0⋅0+(−1)⋅1
Simplify=−1
=−1⋅cos(x)
Multiply: 1⋅cos(x)=cos(x)=−cos(x)
=−cos(x)−cos(27π​)sin(x)
cos(27π​)sin(x)=0
cos(27π​)sin(x)
cos(27π​)=0
cos(27π​)
cos(27π​)=cos(23π​)
cos(27π​)
Rewrite 27π​ as 2π+23π​=cos(2π+23π​)
Apply the periodicity of cos: cos(x+2π)=cos(x)cos(2π+23π​)=cos(23π​)=cos(23π​)
=cos(23π​)
Rewrite using trig identities:cos(π)cos(2π​)−sin(π)sin(2π​)
cos(23π​)
Write cos(23π​)as cos(π+2π​)=cos(π+2π​)
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(π)cos(2π​)−sin(π)sin(2π​)
=cos(π)cos(2π​)−sin(π)sin(2π​)
Use the following trivial identity:cos(π)=(−1)
cos(π)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=(−1)
Use the following trivial identity:cos(2π​)=0
cos(2π​)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=0
Use the following trivial identity:sin(π)=0
sin(π)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=0
Use the following trivial identity:sin(2π​)=1
sin(2π​)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=1
=(−1)⋅0−0⋅1
Simplify=0
=0⋅sin(x)
Apply rule 0⋅a=0=0
=−cos(x)−0
−cos(x)−0=−cos(x)=−cos(x)
=−cos(x)
−cos(x)sin(2x)​=2​
Simplify −cos(x)sin(2x)​:−cos(x)sin(2x)​
−cos(x)sin(2x)​
Apply the fraction rule: −ba​=−ba​=−cos(x)sin(2x)​
−cos(x)sin(2x)​=2​
−cos(x)sin(2x)​=2​
Subtract 2​ from both sides−cos(x)sin(2x)​−2​=0
Simplify −cos(x)sin(2x)​−2​:cos(x)−sin(2x)−2​cos(x)​
−cos(x)sin(2x)​−2​
Convert element to fraction: 2​=cos(x)2​cos(x)​=−cos(x)sin(2x)​−cos(x)2​cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)−sin(2x)−2​cos(x)​
cos(x)−sin(2x)−2​cos(x)​=0
g(x)f(x)​=0⇒f(x)=0−sin(2x)−2​cos(x)=0
Rewrite using trig identities
−sin(2x)−cos(x)2​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=−2sin(x)cos(x)−2​cos(x)
−cos(x)2​−2cos(x)sin(x)=0
Factor −cos(x)2​−2cos(x)sin(x):−cos(x)(2​+2sin(x))
−cos(x)2​−2cos(x)sin(x)
Factor out common term cos(x)=−cos(x)(2​+2sin(x))
−cos(x)(2​+2sin(x))=0
Solving each part separatelycos(x)=0or2​+2sin(x)=0
cos(x)=0:x=2π​+2πn,x=23π​+2πn
cos(x)=0
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
2​+2sin(x)=0:x=45π​+2πn,x=47π​+2πn
2​+2sin(x)=0
Move 2​to the right side
2​+2sin(x)=0
Subtract 2​ from both sides2​+2sin(x)−2​=0−2​
Simplify2sin(x)=−2​
2sin(x)=−2​
Divide both sides by 2
2sin(x)=−2​
Divide both sides by 222sin(x)​=2−2​​
Simplifysin(x)=−22​​
sin(x)=−22​​
General solutions for sin(x)=−22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=45π​+2πn,x=47π​+2πn
x=45π​+2πn,x=47π​+2πn
Combine all the solutionsx=2π​+2πn,x=23π​+2πn,x=45π​+2πn,x=47π​+2πn
Since the equation is undefined for:2π​+2πn,23π​+2πnx=45π​+2πn,x=47π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(x+1)=-2/54cos(2x)+1=3sinh^2(x)=0cos(x)csc^2(x)+3cos(x)=7cos(x)sin(x)-cos(x)=1,0<= x<2pi

Frequently Asked Questions (FAQ)

  • What is the general solution for (sin(2x)}{sin(\frac{7pi)/2-x)}=sqrt(2) ?

    The general solution for (sin(2x)}{sin(\frac{7pi)/2-x)}=sqrt(2) is x=(5pi)/4+2pin,x=(7pi)/4+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024