Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

solvefor t,x=arccos(1/(sqrt(1+t^2)))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

solve for t,x=arccos(1+t2​1​)

Solution

t=cos(x)1−cos2(x)​​,t=−cos(x)1−cos2(x)​​
Solution steps
x=arccos(1+t2​1​)
Switch sidesarccos(1+t2​1​)=x
Apply trig inverse properties
arccos(1+t2​1​)=x
arccos(x)=a⇒x=cos(a)1+t2​1​=cos(x)
1+t2​1​=cos(x)
Solve 1+t2​1​=cos(x):t=cos(x)1−cos2(x)​​{x=arccos(u=1)+2πn,x=−arccos(u=1)+2πn},t=−cos(x)1−cos2(x)​​{x=arccos(u=1)+2πn,x=−arccos(u=1)+2πn}
1+t2​1​=cos(x)
Multiply both sides by 1+t2​1+t2​1​1+t2​=cos(x)1+t2​
Simplify1=cos(x)1+t2​
Switch sidescos(x)1+t2​=1
Divide both sides by cos(x)
cos(x)1+t2​=1
Divide both sides by cos(x)cos(x)cos(x)1+t2​​=cos(x)1​
Simplify1+t2​=cos(x)1​
1+t2​=cos(x)1​
Square both sides:1+t2=cos2(x)1​
1+t2​=cos(x)1​
(1+t2​)2=(cos(x)1​)2
Expand (1+t2​)2:1+t2
(1+t2​)2
Apply radical rule: a​=a21​=((1+t2)21​)2
Apply exponent rule: (ab)c=abc=(1+t2)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=1+t2
Expand (cos(x)1​)2:cos2(x)1​
(cos(x)1​)2
Apply exponent rule: (ba​)c=bcac​=cos2(x)12​
Apply rule 1a=112=1=cos2(x)1​
1+t2=cos2(x)1​
1+t2=cos2(x)1​
Solve 1+t2=cos2(x)1​:t=cos(x)1−cos2(x)​​,t=−cos(x)1−cos2(x)​​
1+t2=cos2(x)1​
Move 1to the right side
1+t2=cos2(x)1​
Subtract 1 from both sides1+t2−1=cos2(x)1​−1
Simplifyt2=cos2(x)1​−1
t2=cos2(x)1​−1
For x2=f(a) the solutions are x=f(a)​,−f(a)​
t=cos2(x)1​−1​,t=−cos2(x)1​−1​
Simplify cos2(x)1​−1​:cos(x)1−cos2(x)​​
cos2(x)1​−1​
Join cos2(x)1​−1:cos2(x)1−cos2(x)​
cos2(x)1​−1
Convert element to fraction: 1=cos2(x)1cos2(x)​=cos2(x)1​−cos2(x)1⋅cos2(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos2(x)1−1⋅cos2(x)​
Multiply: 1⋅cos2(x)=cos2(x)=cos2(x)1−cos2(x)​
=cos2(x)1−cos2(x)​​
Apply radical rule: assuming a≥0,b≥0=cos2(x)​1−cos2(x)​​
Apply radical rule: assuming a≥0cos2(x)​=cos(x)=cos(x)1−cos2(x)​​
Simplify −cos2(x)1​−1​:−cos(x)1−cos2(x)​​
−cos2(x)1​−1​
Join cos2(x)1​−1:cos2(x)1−cos2(x)​
cos2(x)1​−1
Convert element to fraction: 1=cos2(x)1cos2(x)​=cos2(x)1​−cos2(x)1⋅cos2(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos2(x)1−1⋅cos2(x)​
Multiply: 1⋅cos2(x)=cos2(x)=cos2(x)1−cos2(x)​
=−cos2(x)−cos2(x)+1​​
Simplify cos2(x)1−cos2(x)​​:cos(x)1−cos2(x)​​
cos2(x)1−cos2(x)​​
Apply radical rule: assuming a≥0,b≥0=cos2(x)​1−cos2(x)​​
Apply radical rule: assuming a≥0cos2(x)​=cos(x)=cos(x)1−cos2(x)​​
=−cos(x)−cos2(x)+1​​
=−cos(x)1−cos2(x)​​
t=cos(x)1−cos2(x)​​,t=−cos(x)1−cos2(x)​​
t=cos(x)1−cos2(x)​​,t=−cos(x)1−cos2(x)​​
Verify Solutions:t=cos(x)1−cos2(x)​​{x=arccos(u=1)+2πn,x=−arccos(u=1)+2πn},t=−cos(x)1−cos2(x)​​{x=arccos(u=1)+2πn,x=−arccos(u=1)+2πn}
Check the solutions by plugging them into 1+t2​1​=cos(x)
Remove the ones that don't agree with the equation.
Plugt=cos(x)1−cos2(x)​​:1+(cos(x)1−cos2(x)​​)2​1​=cos(x)⇒x=arccos(u=1)+2πn,x=−arccos(u=1)+2πn
1+(cos(x)1−cos2(x)​​)2​1​=cos(x)
Solve by substitution
1+(cos(x)1−cos2(x)​​)2​1​=cos(x)
Let: cos(x)=u1+(u1−u2​​)2​1​=u
1+(u1−u2​​)2​1​=u:u=1
1+(u1−u2​​)2​1​=u
Multiply both sides by 1+(u1−u2​​)2​1+(u1−u2​​)2​1​1+(u1−u2​​)2​=u1+(u1−u2​​)2​
Simplify1=u1+(u1−u2​​)2​
Square both sides:1=1
1=u1+(u1−u2​​)2​
12=​u1+(u1−u2​​)2​​2
Expand 12:1
12
Apply rule 1a=1=1
Expand ​u1+(u1−u2​​)2​​2:1
​u1+(u1−u2​​)2​​2
Apply exponent rule: (a⋅b)n=anbn=u2​1+(u1−u2​​)2​​2
​1+(u1−u2​​)2​​2:1+(u1−u2​​)2
Apply radical rule: a​=a21​=​​1+(u1−u2​​)2​21​​2
Apply exponent rule: (ab)c=abc=​1+(u1−u2​​)2​21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=1+(u1−u2​​)2
=u2​1+(u1−u2​​)2​
Expand ​1+(u1−u2​​)2​u2:1
​1+(u1−u2​​)2​u2
(u1−u2​​)2=u21−u2​
(u1−u2​​)2
Apply exponent rule: (ba​)c=bcac​=u2(1−u2​)2​
(1−u2​)2:1−u2
Apply radical rule: a​=a21​=((1−u2)21​)2
Apply exponent rule: (ab)c=abc=(1−u2)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=1−u2
=u21−u2​
=u2(u2−u2+1​+1)
=u2(1+u21−u2​)
Apply the distributive law: a(b+c)=ab+aca=u2,b=1,c=u21−u2​=u2⋅1+u2u21−u2​
=1⋅u2+u21−u2​u2
Simplify 1⋅u2+u21−u2​u2:1
1⋅u2+u21−u2​u2
1⋅u2=u2
1⋅u2
Multiply: 1⋅u2=u2=u2
u21−u2​u2=1−u2
u21−u2​u2
Multiply fractions: a⋅cb​=ca⋅b​=u2(1−u2)u2​
Cancel the common factor: u2=1−u2
=u2+1−u2
Group like terms=u2−u2+1
Add similar elements: u2−u2=0=1
=1
=1
1=1
1=1
Both sides are equalTrueforallu
Verify Solutions:u<−1False,u=−1False,−1<u<1False,u=1True,u>1False
Check the solutions by plugging them into 1+(u1−u2​​)2​1​=u
Remove the ones that don't agree with the equation.
Plugu<−1:1+(u1−u2​​)2​1​=u⇒False
The solution isu=1
Substitute back u=cos(x)cos(x)=1
cos(x)=1
cos(x)=u=1:x=arccos(u=1)+2πn,x=−arccos(u=1)+2πn
cos(x)=u=1
Apply trig inverse properties
cos(x)=u=1
General solutions for cos(x)=u=1cos(x)=a⇒x=arccos(a)+2πn,x=−arccos(a)+2πnx=arccos(u=1)+2πn,x=−arccos(u=1)+2πn
x=arccos(u=1)+2πn,x=−arccos(u=1)+2πn
Combine all the solutionsx=arccos(u=1)+2πn,x=−arccos(u=1)+2πn
Plugt=−cos(x)1−cos2(x)​​:1+(−cos(x)1−cos2(x)​​)2​1​=cos(x)⇒x=arccos(u=1)+2πn,x=−arccos(u=1)+2πn
1+(−cos(x)1−cos2(x)​​)2​1​=cos(x)
Solve by substitution
1+(−cos(x)1−cos2(x)​​)2​1​=cos(x)
Let: cos(x)=u1+(−u1−u2​​)2​1​=u
1+(−u1−u2​​)2​1​=u:u=1
1+(−u1−u2​​)2​1​=u
Multiply both sides by 1+(u1−u2​​)2​1+(−u1−u2​​)2​1​1+(u1−u2​​)2​=u1+(u1−u2​​)2​
Simplify1+(−u1−u2​​)2​1+(u1−u2​​)2​​=u1+(u1−u2​​)2​
Expand 1+(−u1−u2​​)2​1+(u1−u2​​)2​​:1
1+(−u1−u2​​)2​1+(u1−u2​​)2​​
Combine same powers : y​x​​=yx​​=1+(−u1−u2​​)21+(u1−u2​​)2​​
Expand 1+(−u1−u2​​)21+(u1−u2​​)2​​:1
1+(−u1−u2​​)21+(u1−u2​​)2​​
1+(−u1−u2​​)21+(u1−u2​​)2​=1
1+(−u1−u2​​)21+(u1−u2​​)2​
1+(−u1−u2​​)2=1+(u1−u2​​)2
1+(−u1−u2​​)2
Apply exponent rule: (−a)n=an,if n is even(−u−u2+1​​)2=(u1−u2​​)2=1+(u−u2+1​​)2
=1+(u−u2+1​​)21+(u−u2+1​​)2​
Apply rule aa​=1=1
=1​
Apply rule 1​=1=1
=1
1=u1+(u1−u2​​)2​
Square both sides:1=1
1=u1+(u1−u2​​)2​
12=​u1+(u1−u2​​)2​​2
Expand 12:1
12
Apply rule 1a=1=1
Expand ​u1+(u1−u2​​)2​​2:1
​u1+(u1−u2​​)2​​2
Apply exponent rule: (a⋅b)n=anbn=u2​1+(u1−u2​​)2​​2
​1+(u1−u2​​)2​​2:1+(u1−u2​​)2
Apply radical rule: a​=a21​=​​1+(u1−u2​​)2​21​​2
Apply exponent rule: (ab)c=abc=​1+(u1−u2​​)2​21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=1+(u1−u2​​)2
=u2​1+(u1−u2​​)2​
Expand ​1+(u1−u2​​)2​u2:1
​1+(u1−u2​​)2​u2
(u1−u2​​)2=u21−u2​
(u1−u2​​)2
Apply exponent rule: (ba​)c=bcac​=u2(1−u2​)2​
(1−u2​)2:1−u2
Apply radical rule: a​=a21​=((1−u2)21​)2
Apply exponent rule: (ab)c=abc=(1−u2)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=1−u2
=u21−u2​
=u2(u2−u2+1​+1)
=u2(1+u21−u2​)
Apply the distributive law: a(b+c)=ab+aca=u2,b=1,c=u21−u2​=u2⋅1+u2u21−u2​
=1⋅u2+u21−u2​u2
Simplify 1⋅u2+u21−u2​u2:1
1⋅u2+u21−u2​u2
1⋅u2=u2
1⋅u2
Multiply: 1⋅u2=u2=u2
u21−u2​u2=1−u2
u21−u2​u2
Multiply fractions: a⋅cb​=ca⋅b​=u2(1−u2)u2​
Cancel the common factor: u2=1−u2
=u2+1−u2
Group like terms=u2−u2+1
Add similar elements: u2−u2=0=1
=1
=1
1=1
1=1
Both sides are equalTrueforallu
Verify Solutions:u<−1False,u=−1False,−1<u<1False,u=1True,u>1False
Check the solutions by plugging them into 1+(−u1−u2​​)2​1​=u
Remove the ones that don't agree with the equation.
Plugu<−1:1+(−u1−u2​​)2​1​=u⇒False
The solution isu=1
Substitute back u=cos(x)cos(x)=1
cos(x)=1
cos(x)=u=1:x=arccos(u=1)+2πn,x=−arccos(u=1)+2πn
cos(x)=u=1
Apply trig inverse properties
cos(x)=u=1
General solutions for cos(x)=u=1cos(x)=a⇒x=arccos(a)+2πn,x=−arccos(a)+2πnx=arccos(u=1)+2πn,x=−arccos(u=1)+2πn
x=arccos(u=1)+2πn,x=−arccos(u=1)+2πn
Combine all the solutionsx=arccos(u=1)+2πn,x=−arccos(u=1)+2πn
The solutions aret=cos(x)1−cos2(x)​​{x=arccos(u=1)+2πn,x=−arccos(u=1)+2πn},t=−cos(x)1−cos2(x)​​{x=arccos(u=1)+2πn,x=−arccos(u=1)+2πn}
t=cos(x)1−cos2(x)​​,t=−cos(x)1−cos2(x)​​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

(1-sin(x))(1+cos(x))=cos^2(x)2cos^2(x)+15sin(x)-15=0cos(2x)=sin(x),-2pi<= x<= 2pi5sec^2(θ)sin(θ)-cos(θ)=0cos(x)= 8/11
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024