Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(2x+15)=cos(1/2 x-15)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(2x+15∘)=cos(21​x−15∘)

Solution

NoSolutionforx∈R
Solution steps
sin(2x+15∘)=cos(21​x−15∘)
Rewrite using trig identities
sin(2x+15∘)=cos(21​x−15∘)
Use the following identity: cos(x)=sin(90∘−x)sin(2x+15∘)=sin(90∘−(21​x−15∘))
sin(2x+15∘)=sin(90∘−(21​x−15∘))
Apply trig inverse properties
sin(2x+15∘)=sin(90∘−(21​x−15∘))
sin(x)=sin(y)⇒x=y+2πn,x=π−y+2πn2x+15∘=90∘−(21​x−15∘)+360∘n,2x+15∘=180∘−(90∘−(21​x−15∘))+360∘n
2x+15∘=90∘−(21​x−15∘)+360∘n,2x+15∘=180∘−(90∘−(21​x−15∘))+360∘n
2x+15∘=90∘−(21​x−15∘)+360∘n:x=5720∘n+180∘​
2x+15∘=90∘−(21​x−15∘)+360∘n
Expand 90∘−(21​x−15∘)+360∘n:360∘n−2x​+105∘
90∘−(21​x−15∘)+360∘n
−(21​x−15∘):−21​x+15∘
−(21​x−15∘)
Distribute parentheses=−(21​x)−(−15∘)
Apply minus-plus rules−(−a)=a,−(a)=−a=−21​x+15∘
=90∘−21​x+15∘+360∘n
Simplify 90∘−21​x+15∘+360∘n:360∘n+12−6x+1260∘​
90∘−21​x+15∘+360∘n
Group like terms=−21​x+360∘n+90∘+15∘
Multiply 21​x:2x​
21​x
Multiply fractions: a⋅cb​=ca⋅b​=21⋅x​
Multiply: 1⋅x=x=2x​
=−2x​+360∘n+90∘+15∘
Least Common Multiplier of 2,2,12:12
2,2,12
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 12:2⋅2⋅3
12
12divides by 212=6⋅2=2⋅6
6divides by 26=3⋅2=2⋅2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3
Compute a number comprised of factors that appear in at least one of the following:
2,2,12
=2⋅2⋅3
Multiply the numbers: 2⋅2⋅3=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 2x​:multiply the denominator and numerator by 62x​=2⋅6x⋅6​=12x⋅6​
For 90∘:multiply the denominator and numerator by 690∘=2⋅6180∘6​=90∘
=−12x⋅6​+90∘+15∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12−x⋅6+180∘6+180∘​
Add similar elements: 1080∘+180∘=1260∘=360∘n+12−6x+1260∘​
=360∘n+12−6x+1260∘​
Apply the fraction rule: ca±b​=ca​±cb​12−x⋅6+1260∘​=−12x⋅6​+105∘=360∘n−126x​+105∘
Cancel 12x⋅6​:2x​
12x⋅6​
Cancel the common factor: 6=2x​
=360∘n−2x​+105∘
2x+15∘=360∘n−2x​+105∘
Move 15∘to the right side
2x+15∘=360∘n−2x​+105∘
Subtract 15∘ from both sides2x+15∘−15∘=360∘n−2x​+105∘−15∘
Simplify
2x+15∘−15∘=360∘n−2x​+105∘−15∘
Simplify 2x+15∘−15∘:2x
2x+15∘−15∘
Add similar elements: 15∘−15∘=0
=2x
Simplify 360∘n−2x​+105∘−15∘:360∘n+2−x+180∘​
360∘n−2x​+105∘−15∘
Combine the fractions 105∘−15∘:90∘
Apply rule ca​±cb​=ca±b​=121260∘−180∘​
Add similar elements: 1260∘−180∘=1080∘=90∘
Cancel the common factor: 6=90∘
=360∘n−2x​+90∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=360∘n+2−x+180∘​
2x=360∘n+2−x+180∘​
2x=360∘n+2−x+180∘​
2x=360∘n+2−x+180∘​
Multiply both sides by 2
2x=360∘n+2−x+180∘​
Multiply both sides by 22x⋅2=360∘n⋅2+2−x+180∘​⋅2
Simplify
2x⋅2=360∘n⋅2+2−x+180∘​⋅2
Simplify 2x⋅2:4x
2x⋅2
Multiply the numbers: 2⋅2=4=4x
Simplify 360∘n⋅2:720∘n
360∘n⋅2
Multiply the numbers: 2⋅2=4=720∘n
Simplify 2−x+180∘​⋅2:−x+180∘
2−x+180∘​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=2(−x+180∘)⋅2​
Cancel the common factor: 2=−−x+180∘
4x=720∘n−x+180∘
4x=720∘n−x+180∘
4x=720∘n−x+180∘
Move xto the left side
4x=720∘n−x+180∘
Add x to both sides4x+x=720∘n−x+180∘+x
Simplify5x=720∘n+180∘
5x=720∘n+180∘
Divide both sides by 5
5x=720∘n+180∘
Divide both sides by 555x​=5720∘n​+36∘
Simplify
55x​=5720∘n​+36∘
Simplify 55x​:x
55x​
Divide the numbers: 55​=1=x
Simplify 5720∘n​+36∘:5720∘n+180∘​
5720∘n​+36∘
Apply rule ca​±cb​=ca±b​=5720∘n+180∘​
x=5720∘n+180∘​
x=5720∘n+180∘​
x=5720∘n+180∘​
2x+15∘=180∘−(90∘−(21​x−15∘))+360∘n:x=9360∘+2160∘n​
2x+15∘=180∘−(90∘−(21​x−15∘))+360∘n
Expand 180∘−(90∘−(21​x−15∘))+360∘n:180∘+2x​−105∘+360∘n
180∘−(90∘−(21​x−15∘))+360∘n
Expand 90∘−(21​x−15∘):12−x⋅6+1260∘​
90∘−(21​x−15∘)
−(21​x−15∘):−21​x+15∘
−(21​x−15∘)
Distribute parentheses=−(21​x)−(−15∘)
Apply minus-plus rules−(−a)=a,−(a)=−a=−21​x+15∘
=90∘−21​x+15∘
Simplify 90∘−21​x+15∘:12−6x+1260∘​
90∘−21​x+15∘
Group like terms=−21​x+90∘+15∘
Multiply 21​x:2x​
21​x
Multiply fractions: a⋅cb​=ca⋅b​=21⋅x​
Multiply: 1⋅x=x=2x​
=−2x​+90∘+15∘
Least Common Multiplier of 2,2,12:12
2,2,12
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 12:2⋅2⋅3
12
12divides by 212=6⋅2=2⋅6
6divides by 26=3⋅2=2⋅2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3
Compute a number comprised of factors that appear in at least one of the following:
2,2,12
=2⋅2⋅3
Multiply the numbers: 2⋅2⋅3=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 2x​:multiply the denominator and numerator by 62x​=2⋅6x⋅6​=12x⋅6​
For 90∘:multiply the denominator and numerator by 690∘=2⋅6180∘6​=90∘
=−12x⋅6​+90∘+15∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12−x⋅6+180∘6+180∘​
Add similar elements: 1080∘+180∘=1260∘=12−6x+1260∘​
=12−6x+1260∘​
=180∘−12−6x+1260∘​+360∘n
Apply the fraction rule: ca±b​=ca​±cb​12−x⋅6+1260∘​=−(−12x⋅6​)−(105∘)=180∘−(−126x​)−(105∘)+360∘n
Remove parentheses: (a)=a,−(−a)=a=180∘+12x⋅6​−105∘+360∘n
Cancel 12x⋅6​:2x​
12x⋅6​
Cancel the common factor: 6=2x​
=180∘+2x​−105∘+360∘n
2x+15∘=180∘+2x​−105∘+360∘n
Move 15∘to the right side
2x+15∘=180∘+2x​−105∘+360∘n
Subtract 15∘ from both sides2x+15∘−15∘=180∘+2x​−105∘+360∘n−15∘
Simplify
2x+15∘−15∘=180∘+2x​−105∘+360∘n−15∘
Simplify 2x+15∘−15∘:2x
2x+15∘−15∘
Add similar elements: 15∘−15∘=0
=2x
Simplify 180∘+2x​−105∘+360∘n−15∘:2x​+180∘+360∘n−120∘
180∘+2x​−105∘+360∘n−15∘
Group like terms=2x​+180∘+360∘n−15∘−105∘
Combine the fractions −15∘−105∘:−120∘
Apply rule ca​±cb​=ca±b​=12−180∘−1260∘​
Add similar elements: −180∘−1260∘=−1440∘=12−1440∘​
Apply the fraction rule: b−a​=−ba​=−120∘
Cancel the common factor: 4=−120∘
=2x​+180∘+360∘n−120∘
2x=2x​+180∘+360∘n−120∘
2x=2x​+180∘+360∘n−120∘
2x=2x​+180∘+360∘n−120∘
Move 2x​to the left side
2x=2x​+180∘+360∘n−120∘
Subtract 2x​ from both sides2x−2x​=2x​+180∘+360∘n−120∘−2x​
Simplify
2x−2x​=2x​+180∘+360∘n−120∘−2x​
Simplify 2x−2x​:23x​
2x−2x​
Convert element to fraction: 2x=22x2​=−2x​+22x⋅2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2−x+2x⋅2​
−x+2x⋅2=3x
−x+2x⋅2
Multiply the numbers: 2⋅2=4=−x+4x
Add similar elements: −x+4x=3x=3x
=23x​
Simplify 2x​+180∘+360∘n−120∘−2x​:180∘+360∘n−120∘
2x​+180∘+360∘n−120∘−2x​
Add similar elements: 2x​−2x​=0
=180∘+360∘n−120∘
23x​=180∘+360∘n−120∘
23x​=180∘+360∘n−120∘
23x​=180∘+360∘n−120∘
Multiply both sides by 2
23x​=180∘+360∘n−120∘
Multiply both sides by 222⋅3x​=360∘+2⋅360∘n−2⋅120∘
Simplify
22⋅3x​=360∘+2⋅360∘n−2⋅120∘
Simplify 22⋅3x​:3x
22⋅3x​
Multiply the numbers: 2⋅3=6=26x​
Divide the numbers: 26​=3=3x
Simplify 360∘+2⋅360∘n−2⋅120∘:360∘+720∘n−240∘
360∘+2⋅360∘n−2⋅120∘
2⋅360∘n=720∘n
2⋅360∘n
Multiply the numbers: 2⋅2=4=720∘n
2⋅120∘=240∘
2⋅120∘
Multiply fractions: a⋅cb​=ca⋅b​=240∘
Multiply the numbers: 2⋅2=4=240∘
=360∘+720∘n−240∘
3x=360∘+720∘n−240∘
3x=360∘+720∘n−240∘
3x=360∘+720∘n−240∘
Divide both sides by 3
3x=360∘+720∘n−240∘
Divide both sides by 333x​=120∘+3720∘n​−3240∘​
Simplify
33x​=120∘+3720∘n​−3240∘​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 120∘+3720∘n​−3240∘​:9360∘+2160∘n​
120∘+3720∘n​−3240∘​
Apply rule ca​±cb​=ca±b​=3360∘+720∘n−240∘​
Join 360∘+720∘n−240∘:3360∘+2160∘n​
360∘+720∘n−240∘
Convert element to fraction: 360∘=360∘,720∘n=3720∘n3​=360∘+3720∘n⋅3​−240∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=3360∘3+720∘n⋅3−720∘​
360∘3+720∘n⋅3−720∘=360∘+2160∘n
360∘3+720∘n⋅3−720∘
Multiply the numbers: 2⋅3=6=1080∘+4⋅540∘n−720∘
Multiply the numbers: 4⋅3=12=1080∘+2160∘n−720∘
Group like terms=1080∘−720∘+2160∘n
Add similar elements: 1080∘−720∘=360∘=360∘+2160∘n
=3360∘+2160∘n​
=33360∘+2160∘n​​
Apply the fraction rule: acb​​=c⋅ab​=3⋅3360∘+2160∘n​
Multiply the numbers: 3⋅3=9=9360∘+2160∘n​
x=9360∘+2160∘n​
x=9360∘+2160∘n​
x=9360∘+2160∘n​
Since the equation is undefined for:5720∘n+180∘​,9360∘+2160∘n​NoSolutionforx∈R

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(x)=0.376sin(x)+3=02cos(x)=2cos(3x)8cos^2(x)-2cos(x)-1=03sin(x)=2tan(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for sin(2x+15)=cos(1/2 x-15) ?

    The general solution for sin(2x+15)=cos(1/2 x-15) is No Solution for x\in\mathbb{R}
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024