Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(3x)+cos(6x)=1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(3x)+cos(6x)=1

Solution

x=32πn​,x=3π+2πn​,x=12π+4πn​
+1
Degrees
x=0∘+120∘n,x=60∘+120∘n,x=15∘+60∘n
Solution steps
tan(3x)+cos(6x)=1
Subtract 1 from both sidestan(3x)+cos(6x)−1=0
Let: u=3xtan(u)+cos(2u)−1=0
Express with sin, cos
−1+cos(2u)+tan(u)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=−1+cos(2u)+cos(u)sin(u)​
Simplify −1+cos(2u)+cos(u)sin(u)​:cos(u)−cos(u)+cos(2u)cos(u)+sin(u)​
−1+cos(2u)+cos(u)sin(u)​
Convert element to fraction: 1=cos(u)1cos(u)​,cos(2u)=cos(u)cos(2u)cos(u)​=−cos(u)1⋅cos(u)​+cos(u)cos(2u)cos(u)​+cos(u)sin(u)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(u)−1⋅cos(u)+cos(2u)cos(u)+sin(u)​
Multiply: 1⋅cos(u)=cos(u)=cos(u)−cos(u)+cos(2u)cos(u)+sin(u)​
=cos(u)−cos(u)+cos(2u)cos(u)+sin(u)​
cos(u)−cos(u)+sin(u)+cos(2u)cos(u)​=0
g(x)f(x)​=0⇒f(x)=0−cos(u)+sin(u)+cos(2u)cos(u)=0
Rewrite using trig identities
−cos(u)+sin(u)+cos(2u)cos(u)
Use the Double Angle identity: cos(2x)=1−2sin2(x)=−cos(u)+sin(u)+(1−2sin2(u))cos(u)
Simplify −cos(u)+sin(u)+(1−2sin2(u))cos(u):sin(u)−2sin2(u)cos(u)
−cos(u)+sin(u)+(1−2sin2(u))cos(u)
=−cos(u)+sin(u)+cos(u)(1−2sin2(u))
Expand cos(u)(1−2sin2(u)):cos(u)−2sin2(u)cos(u)
cos(u)(1−2sin2(u))
Apply the distributive law: a(b−c)=ab−aca=cos(u),b=1,c=2sin2(u)=cos(u)⋅1−cos(u)⋅2sin2(u)
=1⋅cos(u)−2sin2(u)cos(u)
Multiply: 1⋅cos(u)=cos(u)=cos(u)−2sin2(u)cos(u)
=−cos(u)+sin(u)+cos(u)−2sin2(u)cos(u)
Add similar elements: −cos(u)+cos(u)=0=sin(u)−2sin2(u)cos(u)
=sin(u)−2sin2(u)cos(u)
sin(u)−2cos(u)sin2(u)=0
Factor sin(u)−2cos(u)sin2(u):sin(u)(1−2sin(u)cos(u))
sin(u)−2cos(u)sin2(u)
Apply exponent rule: ab+c=abacsin2(u)cos(u)=sin(u)sin(u)=sin(u)−2sin(u)sin(u)
Factor out common term sin(u)=sin(u)(1−2sin(u)cos(u))
sin(u)(1−2sin(u)cos(u))=0
Solving each part separatelysin(u)=0or1−2sin(u)cos(u)=0
sin(u)=0:u=2πn,u=π+2πn
sin(u)=0
General solutions for sin(u)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
u=0+2πn,u=π+2πn
u=0+2πn,u=π+2πn
Solve u=0+2πn:u=2πn
u=0+2πn
0+2πn=2πnu=2πn
u=2πn,u=π+2πn
1−2sin(u)cos(u)=0:u=4π​+πn
1−2sin(u)cos(u)=0
Rewrite using trig identities
1−2sin(u)cos(u)
Use the Double Angle identity: 2sin(x)cos(x)=sin(2x)=1−sin(2u)
1−sin(2u)=0
Move 1to the right side
1−sin(2u)=0
Subtract 1 from both sides1−sin(2u)−1=0−1
Simplify−sin(2u)=−1
−sin(2u)=−1
Divide both sides by −1
−sin(2u)=−1
Divide both sides by −1−1−sin(2u)​=−1−1​
Simplifysin(2u)=1
sin(2u)=1
General solutions for sin(2u)=1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
2u=2π​+2πn
2u=2π​+2πn
Solve 2u=2π​+2πn:u=4π​+πn
2u=2π​+2πn
Divide both sides by 2
2u=2π​+2πn
Divide both sides by 222u​=22π​​+22πn​
Simplify
22u​=22π​​+22πn​
Simplify 22u​:u
22u​
Divide the numbers: 22​=1=u
Simplify 22π​​+22πn​:4π​+πn
22π​​+22πn​
22π​​=4π​
22π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅2π​
Multiply the numbers: 2⋅2=4=4π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=4π​+πn
u=4π​+πn
u=4π​+πn
u=4π​+πn
u=4π​+πn
Combine all the solutionsu=2πn,u=π+2πn,u=4π​+πn
Substitute back u=3x
3x=2πn:x=32πn​
3x=2πn
Divide both sides by 3
3x=2πn
Divide both sides by 333x​=32πn​
Simplifyx=32πn​
x=32πn​
3x=π+2πn:x=3π+2πn​
3x=π+2πn
Divide both sides by 3
3x=π+2πn
Divide both sides by 333x​=3π​+32πn​
Simplify
33x​=3π​+32πn​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 3π​+32πn​:3π+2πn​
3π​+32πn​
Apply rule ca​±cb​=ca±b​=3π+2πn​
x=3π+2πn​
x=3π+2πn​
x=3π+2πn​
3x=4π​+πn:x=12π+4πn​
3x=4π​+πn
Divide both sides by 3
3x=4π​+πn
Divide both sides by 333x​=34π​​+3πn​
Simplify
33x​=34π​​+3πn​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 34π​​+3πn​:12π+4πn​
34π​​+3πn​
Apply rule ca​±cb​=ca±b​=34π​+πn​
Join 4π​+πn:4π+4πn​
4π​+πn
Convert element to fraction: πn=4πn4​=4π​+4πn⋅4​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=4π+πn⋅4​
=34π+4πn​​
Apply the fraction rule: acb​​=c⋅ab​=4⋅3π+πn⋅4​
Multiply the numbers: 4⋅3=12=12π+4πn​
x=12π+4πn​
x=12π+4πn​
x=12π+4πn​
x=32πn​,x=3π+2πn​,x=12π+4πn​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin^2(θ)=2cos(θ)+2,0<= θ<= 2pisin(x)=-0.3-sin(x)+cos(x)=0,-pi<= x<= pisin^2(x)=2-2cos(x),0<= x<= 2pitan(θ)=(sqrt(7))/(21)

Frequently Asked Questions (FAQ)

  • What is the general solution for tan(3x)+cos(6x)=1 ?

    The general solution for tan(3x)+cos(6x)=1 is x=(2pin)/3 ,x=(pi+2pin)/3 ,x=(pi+4pin)/(12)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024