Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

5sin(2x)=9tan(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

5sin(2x)=9tan(x)

Solution

x=2πn,x=π+2πn,x=2.81984…+2πn,x=−2.81984…+2πn,x=0.32175…+2πn,x=2π−0.32175…+2πn
+1
Degrees
x=0∘+360∘n,x=180∘+360∘n,x=161.56505…∘+360∘n,x=−161.56505…∘+360∘n,x=18.43494…∘+360∘n,x=341.56505…∘+360∘n
Solution steps
5sin(2x)=9tan(x)
Subtract 9tan(x) from both sides5sin(2x)−9tan(x)=0
Express with sin, cos
5sin(2x)−9tan(x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=5sin(2x)−9⋅cos(x)sin(x)​
Simplify 5sin(2x)−9⋅cos(x)sin(x)​:cos(x)5sin(2x)cos(x)−9sin(x)​
5sin(2x)−9⋅cos(x)sin(x)​
Multiply 9⋅cos(x)sin(x)​:cos(x)9sin(x)​
9⋅cos(x)sin(x)​
Multiply fractions: a⋅cb​=ca⋅b​=cos(x)sin(x)⋅9​
=5sin(2x)−cos(x)9sin(x)​
Convert element to fraction: 5sin(2x)=cos(x)5sin(2x)cos(x)​=cos(x)5sin(2x)cos(x)​−cos(x)sin(x)⋅9​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)5sin(2x)cos(x)−sin(x)⋅9​
=cos(x)5sin(2x)cos(x)−9sin(x)​
cos(x)−9sin(x)+5cos(x)sin(2x)​=0
g(x)f(x)​=0⇒f(x)=0−9sin(x)+5cos(x)sin(2x)=0
Rewrite using trig identities
−9sin(x)+5cos(x)sin(2x)
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=−9sin(x)+5cos(x)⋅2sin(x)cos(x)
5cos(x)⋅2sin(x)cos(x)=10cos2(x)sin(x)
5cos(x)⋅2sin(x)cos(x)
Multiply the numbers: 5⋅2=10=10cos(x)sin(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=10sin(x)cos1+1(x)
Add the numbers: 1+1=2=10sin(x)cos2(x)
=−9sin(x)+10cos2(x)sin(x)
−9sin(x)+10cos2(x)sin(x)=0
Factor −9sin(x)+10cos2(x)sin(x):sin(x)(10​cos(x)+3)(10​cos(x)−3)
−9sin(x)+10cos2(x)sin(x)
Factor out common term sin(x)=sin(x)(−9+10cos2(x))
Factor 10cos2(x)−9:(10​cos(x)+3)(10​cos(x)−3)
10cos2(x)−9
Rewrite 10cos2(x)−9 as (10​cos(x))2−32
10cos2(x)−9
Apply radical rule: a=(a​)210=(10​)2=(10​)2cos2(x)−9
Rewrite 9 as 32=(10​)2cos2(x)−32
Apply exponent rule: ambm=(ab)m(10​)2cos2(x)=(10​cos(x))2=(10​cos(x))2−32
=(10​cos(x))2−32
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(10​cos(x))2−32=(10​cos(x)+3)(10​cos(x)−3)=(10​cos(x)+3)(10​cos(x)−3)
=sin(x)(10​cos(x)+3)(10​cos(x)−3)
sin(x)(10​cos(x)+3)(10​cos(x)−3)=0
Solving each part separatelysin(x)=0or10​cos(x)+3=0or10​cos(x)−3=0
sin(x)=0:x=2πn,x=π+2πn
sin(x)=0
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
10​cos(x)+3=0:x=arccos(−10310​​)+2πn,x=−arccos(−10310​​)+2πn
10​cos(x)+3=0
Move 3to the right side
10​cos(x)+3=0
Subtract 3 from both sides10​cos(x)+3−3=0−3
Simplify10​cos(x)=−3
10​cos(x)=−3
Divide both sides by 10​
10​cos(x)=−3
Divide both sides by 10​10​10​cos(x)​=10​−3​
Simplify
10​10​cos(x)​=10​−3​
Simplify 10​10​cos(x)​:cos(x)
10​10​cos(x)​
Cancel the common factor: 10​=cos(x)
Simplify 10​−3​:−10310​​
10​−3​
Apply the fraction rule: b−a​=−ba​=−10​3​
Rationalize −10​3​:−10310​​
−10​3​
Multiply by the conjugate 10​10​​=−10​10​310​​
10​10​=10
10​10​
Apply radical rule: a​a​=a10​10​=10=10
=−10310​​
=−10310​​
cos(x)=−10310​​
cos(x)=−10310​​
cos(x)=−10310​​
Apply trig inverse properties
cos(x)=−10310​​
General solutions for cos(x)=−10310​​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−10310​​)+2πn,x=−arccos(−10310​​)+2πn
x=arccos(−10310​​)+2πn,x=−arccos(−10310​​)+2πn
10​cos(x)−3=0:x=arccos(10310​​)+2πn,x=2π−arccos(10310​​)+2πn
10​cos(x)−3=0
Move 3to the right side
10​cos(x)−3=0
Add 3 to both sides10​cos(x)−3+3=0+3
Simplify10​cos(x)=3
10​cos(x)=3
Divide both sides by 10​
10​cos(x)=3
Divide both sides by 10​10​10​cos(x)​=10​3​
Simplify
10​10​cos(x)​=10​3​
Simplify 10​10​cos(x)​:cos(x)
10​10​cos(x)​
Cancel the common factor: 10​=cos(x)
Simplify 10​3​:10310​​
10​3​
Multiply by the conjugate 10​10​​=10​10​310​​
10​10​=10
10​10​
Apply radical rule: a​a​=a10​10​=10=10
=10310​​
cos(x)=10310​​
cos(x)=10310​​
cos(x)=10310​​
Apply trig inverse properties
cos(x)=10310​​
General solutions for cos(x)=10310​​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(10310​​)+2πn,x=2π−arccos(10310​​)+2πn
x=arccos(10310​​)+2πn,x=2π−arccos(10310​​)+2πn
Combine all the solutionsx=2πn,x=π+2πn,x=arccos(−10310​​)+2πn,x=−arccos(−10310​​)+2πn,x=arccos(10310​​)+2πn,x=2π−arccos(10310​​)+2πn
Show solutions in decimal formx=2πn,x=π+2πn,x=2.81984…+2πn,x=−2.81984…+2πn,x=0.32175…+2πn,x=2π−0.32175…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

-2sin^2(3x)=cos(3x)-22cos(x)=cot(x)sqrt(3)cos(x)+sin(x)=2cos(2t)-cos(t)=-0.5sin^2(x)-cos(x)+1=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024