Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sinh(4x)= 3/4

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sinh(4x)=43​

Solution

x=41​ln(2)
+1
Degrees
x=9.92860…∘
Solution steps
sinh(4x)=43​
Rewrite using trig identities
sinh(4x)=43​
Use the Hyperbolic identity: sinh(x)=2ex−e−x​2e4x−e−4x​=43​
2e4x−e−4x​=43​
2e4x−e−4x​=43​:x=41​ln(2)
2e4x−e−4x​=43​
Apply fraction cross multiply: if ba​=dc​ then a⋅d=b⋅c(e4x−e−4x)⋅4=2⋅3
Simplify(e4x−e−4x)⋅4=6
Apply exponent rules
(e4x−e−4x)⋅4=6
Apply exponent rule: abc=(ab)ce4x=(ex)4,e−4x=(ex)−4((ex)4−(ex)−4)⋅4=6
((ex)4−(ex)−4)⋅4=6
Rewrite the equation with ex=u((u)4−(u)−4)⋅4=6
Solve (u4−u−4)⋅4=6:u=2​​,u=−2​​
(u4−u−4)⋅4=6
Refine(u4−u41​)⋅4=6
Simplify (u4−u41​)⋅4:4(u4−u41​)
(u4−u41​)⋅4
Apply the commutative law: (u4−u41​)⋅4=4(u4−u41​)4(u4−u41​)
4(u4−u41​)=6
Expand 4(u4−u41​):4u4−u44​
4(u4−u41​)
Apply the distributive law: a(b−c)=ab−aca=4,b=u4,c=u41​=4u4−4⋅u41​
4⋅u41​=u44​
4⋅u41​
Multiply fractions: a⋅cb​=ca⋅b​=u41⋅4​
Multiply the numbers: 1⋅4=4=u44​
=4u4−u44​
4u4−u44​=6
Multiply both sides by u4
4u4−u44​=6
Multiply both sides by u44u4u4−u44​u4=6u4
Simplify
4u4u4−u44​u4=6u4
Simplify 4u4u4:4u8
4u4u4
Apply exponent rule: ab⋅ac=ab+cu4u4=u4+4=4u4+4
Add the numbers: 4+4=8=4u8
Simplify −u44​u4:−4
−u44​u4
Multiply fractions: a⋅cb​=ca⋅b​=−u44u4​
Cancel the common factor: u4=−4
4u8−4=6u4
4u8−4=6u4
4u8−4=6u4
Solve 4u8−4=6u4:u=2​​,u=−2​​
4u8−4=6u4
Move 6u4to the left side
4u8−4=6u4
Subtract 6u4 from both sides4u8−4−6u4=6u4−6u4
Simplify4u8−4−6u4=0
4u8−4−6u4=0
Write in the standard form an​xn+…+a1​x+a0​=04u8−6u4−4=0
Rewrite the equation with v=u2,v2=u4 and v4=u84v4−6v2−4=0
Solve 4v4−6v2−4=0:v=2​,v=−2​
4v4−6v2−4=0
Rewrite the equation with u=v2 and u2=v44u2−6u−4=0
Solve 4u2−6u−4=0:u=2,u=−21​
4u2−6u−4=0
Solve with the quadratic formula
4u2−6u−4=0
Quadratic Equation Formula:
For a=4,b=−6,c=−4u1,2​=2⋅4−(−6)±(−6)2−4⋅4(−4)​​
u1,2​=2⋅4−(−6)±(−6)2−4⋅4(−4)​​
(−6)2−4⋅4(−4)​=10
(−6)2−4⋅4(−4)​
Apply rule −(−a)=a=(−6)2+4⋅4⋅4​
Apply exponent rule: (−a)n=an,if n is even(−6)2=62=62+4⋅4⋅4​
Multiply the numbers: 4⋅4⋅4=64=62+64​
62=36=36+64​
Add the numbers: 36+64=100=100​
Factor the number: 100=102=102​
Apply radical rule: 102​=10=10
u1,2​=2⋅4−(−6)±10​
Separate the solutionsu1​=2⋅4−(−6)+10​,u2​=2⋅4−(−6)−10​
u=2⋅4−(−6)+10​:2
2⋅4−(−6)+10​
Apply rule −(−a)=a=2⋅46+10​
Add the numbers: 6+10=16=2⋅416​
Multiply the numbers: 2⋅4=8=816​
Divide the numbers: 816​=2=2
u=2⋅4−(−6)−10​:−21​
2⋅4−(−6)−10​
Apply rule −(−a)=a=2⋅46−10​
Subtract the numbers: 6−10=−4=2⋅4−4​
Multiply the numbers: 2⋅4=8=8−4​
Apply the fraction rule: b−a​=−ba​=−84​
Cancel the common factor: 4=−21​
The solutions to the quadratic equation are:u=2,u=−21​
u=2,u=−21​
Substitute back u=v2,solve for v
Solve v2=2:v=2​,v=−2​
v2=2
For x2=f(a) the solutions are x=f(a)​,−f(a)​
v=2​,v=−2​
Solve v2=−21​:No Solution for v∈R
v2=−21​
x2 cannot be negative for x∈RNoSolutionforv∈R
The solutions are
v=2​,v=−2​
v=2​,v=−2​
Substitute back v=u2,solve for u
Solve u2=2​:u=2​​,u=−2​​
u2=2​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=2​​,u=−2​​
Solve u2=−2​:No Solution for u∈R
u2=−2​
x2 cannot be negative for x∈RNoSolutionforu∈R
The solutions are
u=2​​,u=−2​​
u=2​​,u=−2​​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of (u4−u−4)4 and compare to zero
Solve u4=0:u=0
u4=0
Apply rule xn=0⇒x=0
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=2​​,u=−2​​
u=2​​,u=−2​​
Substitute back u=ex,solve for x
Solve ex=2​​:x=41​ln(2)
ex=2​​
Apply exponent rules
ex=2​​
Apply exponent rule: a​=a21​2​​=2​21​ex=(2​)21​
Apply exponent rule: (ab)c=abc(2​)21​=221​⋅21​ex=221​⋅21​
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(221​⋅21​)
Apply log rule: ln(ea)=aln(ex)=xx=ln(221​⋅21​)
Apply log rule: ln(xa)=a⋅ln(x)ln(221​⋅21​)=21​⋅21​ln(2)x=21​⋅21​ln(2)
Simplifyx=41​ln(2)
x=41​ln(2)
Solve ex=−2​​:No Solution for x∈R
ex=−2​​
Apply exponent rules
ex=−2​​
Apply exponent rule: (ab)c=abc2​​=221​⋅21​ex=−221​⋅21​
ex=−221​⋅21​
af(x) cannot be zero or negative for x∈RNoSolutionforx∈R
x=41​ln(2)
x=41​ln(2)

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(x)+sec(x)=32sin(pi/3-x)-1=0cos(θ)=-(11)/(sqrt(170))sin(x)=cos^2(x)-sin^2(x)-1tan((3x)/2+pi/2)=1

Frequently Asked Questions (FAQ)

  • What is the general solution for sinh(4x)= 3/4 ?

    The general solution for sinh(4x)= 3/4 is x= 1/4 ln(2)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024