Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

ln(tanh(3-4i))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

ln(tanh(3−4i))

Solution

ln(cos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)−cos2(4)−sin2(4)+e12cos2(4)+e12sin2(4)−4e6icos(4)sin(4)​)
Solution steps
ln(tanh(3−4i))
Rewrite using trig identities:tanh(3−4i)=cos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)−cos2(4)−sin2(4)+e12cos2(4)+e12sin2(4)​−icos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)4e6cos(4)sin(4)​
tanh(3−4i)
Use the Hyperbolic identity: tanh(x)=ex+e−xex−e−x​=e3−4i+e−(3−4i)e3−4i−e−(3−4i)​
Simplify e3−4i+e−(3−4i)e3−4i−e−(3−4i)​:cos2(4)+sin2(4)+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)−cos2(4)−sin2(4)+e12cos2(−4)+e12sin2(−4)​+icos2(4)+sin2(4)+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)−2e6sin(4)cos(−4)+2e6cos(4)sin(−4)​
e3−4i+e−(3−4i)e3−4i−e−(3−4i)​
e3−4i−e−(3−4i)=e3(cos(−4)+isin(−4))−e−3(cos(4)+isin(4))
e3−4i−e−(3−4i)
Apply imaginary number rule: ea+ib=ea(cos(b)+isin(b))=e3(cos(−4)+isin(−4))−e−(3−4i)
Apply imaginary number rule: ea+ib=ea(cos(b)+isin(b))=e3(cos(−4)+isin(−4))−e−3(cos(4)+isin(4))
=e3−4i+e−(3−4i)e3(cos(−4)+isin(−4))−e−3(cos(4)+isin(4))​
e3−4i+e−(3−4i)=e3(cos(−4)+isin(−4))+e−3(cos(4)+isin(4))
e3−4i+e−(3−4i)
Apply imaginary number rule: ea+ib=ea(cos(b)+isin(b))=e3(cos(−4)+isin(−4))+e−(3−4i)
Apply imaginary number rule: ea+ib=ea(cos(b)+isin(b))=e3(cos(−4)+isin(−4))+e−3(cos(4)+isin(4))
=e3(cos(−4)+isin(−4))+e−3(cos(4)+isin(4))e3(cos(−4)+isin(−4))−e−3(cos(4)+isin(4))​
Apply complex arithmetic rule: c+dia+bi​=(c−di)(c+di)(c−di)(a+bi)​=c2+d2(ac+bd)+(bc−ad)i​a=e3e6cos(−4)−cos(4)​,b=e3e6sin(−4)−sin(4)​,c=e3e6cos(−4)+cos(4)​,d=e3e6sin(−4)+sin(4)​=(e3e6cos(−4)+cos(4)​)2+(e3e6sin(−4)+sin(4)​)2(e3e6cos(−4)−cos(4)​⋅e3e6cos(−4)+cos(4)​+e3e6sin(−4)−sin(4)​⋅e3e6sin(−4)+sin(4)​)+(e3e6sin(−4)−sin(4)​⋅e3e6cos(−4)+cos(4)​−e3e6cos(−4)−cos(4)​⋅e3e6sin(−4)+sin(4)​)i​
Refine=e6(e6cos(−4)+cos(4))2+(e6sin(−4)+sin(4))2​e6(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))​+e62e6cos(4)sin(−4)−2e6sin(4)cos(−4)​i​
Simplify e6(e6cos(−4)+cos(4))2+(e6sin(−4)+sin(4))2​e6(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))​+e62e6cos(4)sin(−4)−2e6sin(4)cos(−4)​i​:(e6cos(−4)+cos(4))2+(e6sin(−4)+sin(4))2(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))+i(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))​
e6(e6cos(−4)+cos(4))2+(e6sin(−4)+sin(4))2​e6(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))​+e62e6cos(4)sin(−4)−2e6sin(4)cos(−4)​i​
Apply the fraction rule: cb​a​=ba⋅c​=(e6cos(−4)+cos(4))2+(e6sin(−4)+sin(4))2(e6(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))​+e62e6cos(4)sin(−4)−2e6sin(4)cos(−4)​i)e6​
Multiply e62e6cos(4)sin(−4)−2e6sin(4)cos(−4)​i:e6i(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))​
e62e6cos(4)sin(−4)−2e6sin(4)cos(−4)​i
Multiply fractions: a⋅cb​=ca⋅b​=e6(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))i​
=(e6cos(−4)+cos(4))2+(e6sin(−4)+sin(4))2e6(e6(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))​+e6i(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))​)​
Combine the fractions e6(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))​+e6i(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))​:e6(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))+i(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))​
Apply rule ca​±cb​=ca±b​=e6(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))+i(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))​
=(e6cos(−4)+cos(4))2+(e6sin(−4)+sin(4))2e6(e6i(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))+(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))​)​
Remove parentheses: (a)=a=(e6cos(−4)+cos(4))2+(e6sin(−4)+sin(4))2e6(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))+(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))i​e6​
Multiply e6(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))+(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))i​e6:(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))+i(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))
e6(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))+(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))i​e6
Multiply fractions: a⋅cb​=ca⋅b​=e6((e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))+(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))i)e6​
Cancel the common factor: e6=(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))+(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))i
=(e6cos(−4)+cos(4))2+(e6sin(−4)+sin(4))2(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))+i(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))​
=(e6cos(−4)+cos(4))2+(e6sin(−4)+sin(4))2(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))+i(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))​
Rewrite (e6cos(−4)+cos(4))2+(e6sin(−4)+sin(4))2(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))+i(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))​ in standard complex form: e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)e12cos2(−4)−cos2(4)+e12sin2(−4)−sin2(4)​+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)2e6cos(4)sin(−4)−2e6sin(4)cos(−4)​i
(e6cos(−4)+cos(4))2+(e6sin(−4)+sin(4))2(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))+i(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))​
Expand (e6cos(−4)+cos(4))2+(e6sin(−4)+sin(4))2:e12cos2(−4)+2e6cos(4)cos(−4)+cos2(4)+e12sin2(−4)+2e6sin(4)sin(−4)+sin2(4)
(e6cos(−4)+cos(4))2+(e6sin(−4)+sin(4))2
(e6cos(−4)+cos(4))2:e12cos2(−4)+2e6cos(4)cos(−4)+cos2(4)
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=e6cos(−4),b=cos(4)
=(e6cos(−4))2+2e6cos(−4)cos(4)+cos2(4)
(e6cos(−4))2=e12cos2(−4)
(e6cos(−4))2
Apply exponent rule: (a⋅b)n=anbn=cos2(−4)(e6)2
(e6)2:e12
Apply exponent rule: (ab)c=abc=e6⋅2
Multiply the numbers: 6⋅2=12=e12
=e12cos2(−4)
=e12cos2(−4)+2e6cos(4)cos(−4)+cos2(4)
=e12cos2(−4)+2e6cos(4)cos(−4)+cos2(4)+(e6sin(−4)+sin(4))2
(e6sin(−4)+sin(4))2:e12sin2(−4)+2e6sin(4)sin(−4)+sin2(4)
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=e6sin(−4),b=sin(4)
=(e6sin(−4))2+2e6sin(−4)sin(4)+sin2(4)
(e6sin(−4))2=e12sin2(−4)
(e6sin(−4))2
Apply exponent rule: (a⋅b)n=anbn=sin2(−4)(e6)2
(e6)2:e12
Apply exponent rule: (ab)c=abc=e6⋅2
Multiply the numbers: 6⋅2=12=e12
=e12sin2(−4)
=e12sin2(−4)+2e6sin(4)sin(−4)+sin2(4)
=e12cos2(−4)+2e6cos(4)cos(−4)+cos2(4)+e12sin2(−4)+2e6sin(4)sin(−4)+sin2(4)
=e12cos2(−4)+2e6cos(4)cos(−4)+cos2(4)+e12sin2(−4)+2e6sin(4)sin(−4)+sin2(4)(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))+i(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))​
Expand (e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))+i(2e6cos(4)sin(−4)−2e6sin(4)cos(−4)):e12cos2(−4)−cos2(4)+e12sin2(−4)−sin2(4)+2e6icos(4)sin(−4)−2e6isin(4)cos(−4)
(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))+i(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))
Expand (e6cos(−4)−cos(4))(e6cos(−4)+cos(4)):e12cos2(−4)−cos2(4)
(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))
Apply Difference of Two Squares Formula: (a−b)(a+b)=a2−b2a=e6cos(−4),b=cos(4)=(e6cos(−4))2−cos2(4)
(e6cos(−4))2=e12cos2(−4)
(e6cos(−4))2
Apply exponent rule: (a⋅b)n=anbn=cos2(−4)(e6)2
(e6)2:e12
Apply exponent rule: (ab)c=abc=e6⋅2
Multiply the numbers: 6⋅2=12=e12
=e12cos2(−4)
=e12cos2(−4)−cos2(4)
=e12cos2(−4)−cos2(4)+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))+i(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))
Expand (e6sin(−4)−sin(4))(e6sin(−4)+sin(4)):e12sin2(−4)−sin2(4)
(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))
Apply Difference of Two Squares Formula: (a−b)(a+b)=a2−b2a=e6sin(−4),b=sin(4)=(e6sin(−4))2−sin2(4)
(e6sin(−4))2=e12sin2(−4)
(e6sin(−4))2
Apply exponent rule: (a⋅b)n=anbn=sin2(−4)(e6)2
(e6)2:e12
Apply exponent rule: (ab)c=abc=e6⋅2
Multiply the numbers: 6⋅2=12=e12
=e12sin2(−4)
=e12sin2(−4)−sin2(4)
=e12cos2(−4)−cos2(4)+e12sin2(−4)−sin2(4)+i(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))
Expand i(2e6cos(4)sin(−4)−2e6sin(4)cos(−4)):2e6icos(4)sin(−4)−2e6isin(4)cos(−4)
i(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))
Apply the distributive law: a(b−c)=ab−aca=i,b=2e6cos(4)sin(−4),c=2e6sin(4)cos(−4)=i2e6cos(4)sin(−4)−i2e6sin(4)cos(−4)
=2e6icos(4)sin(−4)−2e6isin(4)cos(−4)
=e12cos2(−4)−cos2(4)+e12sin2(−4)−sin2(4)+2e6icos(4)sin(−4)−2e6isin(4)cos(−4)
=e12cos2(−4)+2e6cos(4)cos(−4)+cos2(4)+e12sin2(−4)+2e6sin(4)sin(−4)+sin2(4)e12cos2(−4)−cos2(4)+e12sin2(−4)−sin2(4)+2e6icos(4)sin(−4)−2e6isin(4)cos(−4)​
Apply the fraction rule: ca±b​=ca​±cb​e12cos2(−4)+2e6cos(4)cos(−4)+cos2(4)+e12sin2(−4)+2e6sin(4)sin(−4)+sin2(4)e12cos2(−4)−cos2(4)+e12sin2(−4)−sin2(4)+2e6icos(4)sin(−4)−2e6isin(4)cos(−4)​=e12cos2(−4)+2e6cos(4)cos(−4)+cos2(4)+e12sin2(−4)+2e6sin(4)sin(−4)+sin2(4)e12cos2(−4)​−e12cos2(−4)+2e6cos(4)cos(−4)+cos2(4)+e12sin2(−4)+2e6sin(4)sin(−4)+sin2(4)cos2(4)​+e12cos2(−4)+2e6cos(4)cos(−4)+cos2(4)+e12sin2(−4)+2e6sin(4)sin(−4)+sin2(4)e12sin2(−4)​−e12cos2(−4)+2e6cos(4)cos(−4)+cos2(4)+e12sin2(−4)+2e6sin(4)sin(−4)+sin2(4)sin2(4)​+e12cos2(−4)+2e6cos(4)cos(−4)+cos2(4)+e12sin2(−4)+2e6sin(4)sin(−4)+sin2(4)2e6icos(4)sin(−4)​−e12cos2(−4)+2e6cos(4)cos(−4)+cos2(4)+e12sin2(−4)+2e6sin(4)sin(−4)+sin2(4)2e6isin(4)cos(−4)​=e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)e12cos2(−4)​−e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)cos2(4)​+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)e12sin2(−4)​−e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)sin2(4)​+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)2e6icos(4)sin(−4)​−e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)2e6isin(4)cos(−4)​
Group the real part and the imaginary part of the complex number=(e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)e12cos2(−4)​−e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)cos2(4)​+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)e12sin2(−4)​−e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)sin2(4)​)+(e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)2e6cos(4)sin(−4)​−e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)2e6sin(4)cos(−4)​)i
e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)2e6cos(4)sin(−4)​−e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)2e6sin(4)cos(−4)​=e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)2e6cos(4)sin(−4)−2e6sin(4)cos(−4)​
e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)2e6cos(4)sin(−4)​−e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)2e6sin(4)cos(−4)​
Apply rule ca​±cb​=ca±b​=e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)2e6cos(4)sin(−4)−2e6sin(4)cos(−4)​
=(e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)e12cos2(−4)​−e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)cos2(4)​+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)e12sin2(−4)​−e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)sin2(4)​)+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)2e6cos(4)sin(−4)−2e6sin(4)cos(−4)​i
e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)e12cos2(−4)​−e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)cos2(4)​+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)e12sin2(−4)​−e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)sin2(4)​=e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)e12cos2(−4)−cos2(4)+e12sin2(−4)−sin2(4)​
e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)e12cos2(−4)​−e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)cos2(4)​+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)e12sin2(−4)​−e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)sin2(4)​
Apply rule ca​±cb​=ca±b​=e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)e12cos2(−4)−cos2(4)+e12sin2(−4)−sin2(4)​
=e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)e12cos2(−4)−cos2(4)+e12sin2(−4)−sin2(4)​+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)2e6cos(4)sin(−4)−2e6sin(4)cos(−4)​i
=e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)e12cos2(−4)−cos2(4)+e12sin2(−4)−sin2(4)​+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)2e6cos(4)sin(−4)−2e6sin(4)cos(−4)​i
=cos2(4)+sin2(4)+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)−cos2(4)−sin2(4)+e12cos2(−4)+e12sin2(−4)​+icos2(4)+sin2(4)+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)−2e6sin(4)cos(−4)+2e6cos(4)sin(−4)​
Use the following property: sin(−x)=−sin(x)sin(−4)=−sin(4)=cos2(4)+sin2(4)+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)−cos2(4)−sin2(4)+e12cos2(−4)+e12sin2(−4)​+icos2(4)+sin2(4)+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)(−sin(4))−2e6sin(4)cos(−4)+2e6cos(4)sin(−4)​
Use the following property: cos(−x)=cos(x)cos(−4)=cos(4)=cos2(4)+sin2(4)+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)−cos2(4)−sin2(4)+e12cos2(−4)+e12sin2(−4)​+icos2(4)+sin2(4)+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(4)+2e6sin(4)(−sin(4))−2e6sin(4)cos(−4)+2e6cos(4)sin(−4)​
Use the following property: sin(−x)=−sin(x)sin(−4)=−sin(4)=cos2(4)+sin2(4)+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)−cos2(4)−sin2(4)+e12cos2(−4)+e12sin2(−4)​+icos2(4)+sin2(4)+e12cos2(−4)+e12(−sin(4))2+2e6cos(4)cos(4)+2e6sin(4)(−sin(4))−2e6sin(4)cos(−4)+2e6cos(4)sin(−4)​
Use the following property: cos(−x)=cos(x)cos(−4)=cos(4)=cos2(4)+sin2(4)+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)−cos2(4)−sin2(4)+e12cos2(−4)+e12sin2(−4)​+icos2(4)+sin2(4)+e12cos2(4)+e12(−sin(4))2+2e6cos(4)cos(4)+2e6sin(4)(−sin(4))−2e6sin(4)cos(−4)+2e6cos(4)sin(−4)​
Use the following property: sin(−x)=−sin(x)sin(−4)=−sin(4)=cos2(4)+sin2(4)+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)−cos2(4)−sin2(4)+e12cos2(−4)+e12sin2(−4)​+icos2(4)+sin2(4)+e12cos2(4)+e12(−sin(4))2+2e6cos(4)cos(4)+2e6sin(4)(−sin(4))−2e6sin(4)cos(−4)+2e6cos(4)(−sin(4))​
Use the following property: cos(−x)=cos(x)cos(−4)=cos(4)=cos2(4)+sin2(4)+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)−cos2(4)−sin2(4)+e12cos2(−4)+e12sin2(−4)​+icos2(4)+sin2(4)+e12cos2(4)+e12(−sin(4))2+2e6cos(4)cos(4)+2e6sin(4)(−sin(4))−2e6sin(4)cos(4)+2e6cos(4)(−sin(4))​
Use the following property: sin(−x)=−sin(x)sin(−4)=−sin(4)=cos2(4)+sin2(4)+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)(−sin(4))−cos2(4)−sin2(4)+e12cos2(−4)+e12sin2(−4)​+icos2(4)+sin2(4)+e12cos2(4)+e12(−sin(4))2+2e6cos(4)cos(4)+2e6sin(4)(−sin(4))−2e6sin(4)cos(4)+2e6cos(4)(−sin(4))​
Use the following property: cos(−x)=cos(x)cos(−4)=cos(4)=cos2(4)+sin2(4)+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(4)+2e6sin(4)(−sin(4))−cos2(4)−sin2(4)+e12cos2(−4)+e12sin2(−4)​+icos2(4)+sin2(4)+e12cos2(4)+e12(−sin(4))2+2e6cos(4)cos(4)+2e6sin(4)(−sin(4))−2e6sin(4)cos(4)+2e6cos(4)(−sin(4))​
Use the following property: sin(−x)=−sin(x)sin(−4)=−sin(4)=cos2(4)+sin2(4)+e12cos2(−4)+e12(−sin(4))2+2e6cos(4)cos(4)+2e6sin(4)(−sin(4))−cos2(4)−sin2(4)+e12cos2(−4)+e12sin2(−4)​+icos2(4)+sin2(4)+e12cos2(4)+e12(−sin(4))2+2e6cos(4)cos(4)+2e6sin(4)(−sin(4))−2e6sin(4)cos(4)+2e6cos(4)(−sin(4))​
Use the following property: cos(−x)=cos(x)cos(−4)=cos(4)=cos2(4)+sin2(4)+e12cos2(4)+e12(−sin(4))2+2e6cos(4)cos(4)+2e6sin(4)(−sin(4))−cos2(4)−sin2(4)+e12cos2(−4)+e12sin2(−4)​+icos2(4)+sin2(4)+e12cos2(4)+e12(−sin(4))2+2e6cos(4)cos(4)+2e6sin(4)(−sin(4))−2e6sin(4)cos(4)+2e6cos(4)(−sin(4))​
Use the following property: sin(−x)=−sin(x)sin(−4)=−sin(4)=cos2(4)+sin2(4)+e12cos2(4)+e12(−sin(4))2+2e6cos(4)cos(4)+2e6sin(4)(−sin(4))−cos2(4)−sin2(4)+e12cos2(−4)+e12(−sin(4))2​+icos2(4)+sin2(4)+e12cos2(4)+e12(−sin(4))2+2e6cos(4)cos(4)+2e6sin(4)(−sin(4))−2e6sin(4)cos(4)+2e6cos(4)(−sin(4))​
Use the following property: cos(−x)=cos(x)cos(−4)=cos(4)=cos2(4)+sin2(4)+e12cos2(4)+e12(−sin(4))2+2e6cos(4)cos(4)+2e6sin(4)(−sin(4))−cos2(4)−sin2(4)+e12cos2(4)+e12(−sin(4))2​+icos2(4)+sin2(4)+e12cos2(4)+e12(−sin(4))2+2e6cos(4)cos(4)+2e6sin(4)(−sin(4))−2e6sin(4)cos(4)+2e6cos(4)(−sin(4))​
Simplify=cos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)−cos2(4)−sin2(4)+e12cos2(4)+e12sin2(4)​−icos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)4e6cos(4)sin(4)​
=ln(cos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)−cos2(4)−sin2(4)+e12cos2(4)+e12sin2(4)​−icos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)4e6cos(4)sin(4)​)
Simplify ln(cos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)−cos2(4)−sin2(4)+e12cos2(4)+e12sin2(4)​−icos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)4e6cos(4)sin(4)​):ln(cos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)−cos2(4)−sin2(4)+e12cos2(4)+e12sin2(4)−4e6icos(4)sin(4)​)
ln(cos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)−cos2(4)−sin2(4)+e12cos2(4)+e12sin2(4)​−icos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)4e6cos(4)sin(4)​)
Multiply icos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)4e6cos(4)sin(4)​:cos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)4e6icos(4)sin(4)​
icos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)4e6cos(4)sin(4)​
Multiply fractions: a⋅cb​=ca⋅b​=cos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)4e6cos(4)sin(4)i​
=ln(e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)+cos2(4)+sin2(4)e12cos2(4)−cos2(4)+e12sin2(4)−sin2(4)​−e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)+cos2(4)+sin2(4)4e6icos(4)sin(4)​)
Join cos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)−cos2(4)−sin2(4)+e12cos2(4)+e12sin2(4)​−cos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)4e6cos(4)sin(4)i​:cos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)−cos2(4)−sin2(4)+e12cos2(4)+e12sin2(4)−4e6icos(4)sin(4)​
cos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)−cos2(4)−sin2(4)+e12cos2(4)+e12sin2(4)​−cos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)4e6cos(4)sin(4)i​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)−cos2(4)−sin2(4)+e12cos2(4)+e12sin2(4)−4e6cos(4)sin(4)i​
=ln(cos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)−cos2(4)−sin2(4)+e12cos2(4)+e12sin2(4)−4e6cos(4)sin(4)i​)
=ln(cos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)−cos2(4)−sin2(4)+e12cos2(4)+e12sin2(4)−4e6icos(4)sin(4)​)
=ln(cos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)−cos2(4)−sin2(4)+e12cos2(4)+e12sin2(4)−4e6icos(4)sin(4)​)

Popular Examples

arccos(1.66)arctan(20/5)tan(-12/5)(sin(pi/4))/(1-cos(pi/4))8sin(135)

Frequently Asked Questions (FAQ)

  • What is the value of ln(tanh(3-4i)) ?

    The value of ln(tanh(3-4i)) is
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024