Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(cos((2pi)/3)+isin((2pi)/3))^3

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

(cos(32π​)+isin(32π​))3

Solution

1
Solution steps
(cos(32π​)+isin(32π​))3
Use the following trivial identity:cos(32π​)=−21​
cos(32π​)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=−21​
Use the following trivial identity:sin(32π​)=23​​
sin(32π​)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=23​​
=(−21​+i23​​)3
Simplify (−21​+i23​​)3:1
(−21​+i23​​)3
Multiply i23​​:23​i​
i23​​
Multiply fractions: a⋅cb​=ca⋅b​=23​i​
=(−21​+23​i​)3
Combine the fractions −21​+23​i​:2−1+3​i​
Apply rule ca​±cb​=ca±b​=2−1+3​i​
=(2−1+3​i​)3
Apply exponent rule: (ba​)c=bcac​=23(−1+3​i)3​
(−1+3​i)3=8
(−1+3​i)3
Apply Perfect Cube Formula: (a+b)3=a3+3a2b+3ab2+b3a=−1,b=3​i
=(−1)3+3(−1)23​i+3(−1)(3​i)2+(3​i)3
Simplify (−1)3+3(−1)23​i+3(−1)(3​i)2+(3​i)3:8
(−1)3+3(−1)23​i+3(−1)(3​i)2+(3​i)3
Remove parentheses: (−a)=−a=(−1)3+3(−1)23​i−3⋅1⋅(3​i)2+(3​i)3
(−1)3=−1
(−1)3
Apply exponent rule: (−a)n=−an,if n is odd(−1)3=−13=−13
Apply rule 1a=1=−1
=−1+(−1)2⋅33​i−3⋅1⋅(3​i)2+(3​i)3
3(−1)23​i=33​i
3(−1)23​i
(−1)2=1
(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
=3⋅1⋅3​i
Multiply the numbers: 3⋅1=3=33​i
3⋅1⋅(3​i)2=−9
3⋅1⋅(3​i)2
(3​i)2=3i2
(3​i)2
Apply exponent rule: (a⋅b)n=anbn=i2(3​)2
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=3i2
=3⋅1⋅3i2
Multiply the numbers: 3⋅1⋅3=9=9i2
i2=−1
i2
Apply imaginary number rule: i2=−1=−1
=9(−1)
Remove parentheses: (−a)=−a=−9⋅1
Multiply the numbers: 9⋅1=9=−9
(3​i)3=−33​i
(3​i)3
Apply exponent rule: (a⋅b)n=anbn=i3(3​)3
(3​)3:323​
Apply radical rule: a​=a21​=(321​)3
Apply exponent rule: (ab)c=abc=321​⋅3
21​⋅3=23​
21​⋅3
Multiply fractions: a⋅cb​=ca⋅b​=21⋅3​
Multiply the numbers: 1⋅3=3=23​
=323​
=323​i3
323​=33​
323​
323​=31+21​=31+21​
Apply exponent rule: xa+b=xaxb=31⋅321​
Refine=33​
=33​i3
i3=−i
i3
Apply exponent rule: ab+c=abaci3=i2i=i2i
Apply imaginary number rule: i2=−1=−1i
Multiply: 1i=i=−i
=33​(−i)
Remove parentheses: (−a)=−a=−33​i
=−1+33​i−(−9)−33​i
Apply rule −(−a)=a=−1+33​i+9−33​i
Group like terms=33​i−33​i−1+9
Add similar elements: 33​i−33​i=0=−1+9
Add/Subtract the numbers: −1+9=8=8
=8
=238​
Simplify
238​
Factor 8:23
Factor 8=23
=2323​
Cancel the common factor: 23=1
=1
=1

Popular Examples

sin(2(-pi/2))cos((sqrt(pi))/3)(0)-arctan(0)3*tan(60)arctan(7/(-10))

Frequently Asked Questions (FAQ)

  • What is the value of (cos((2pi)/3)+isin((2pi)/3))^3 ?

    The value of (cos((2pi)/3)+isin((2pi)/3))^3 is 1
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024