Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(tan^2(-(5pi)/6))/(sec(-(5pi)/6)+1)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sec(−65π​)+1tan2(−65π​)​

Solution

−323​+3​
+1
Decimal
−2.15470…
Solution steps
sec(−65π​)+1tan2(−65π​)​
Use the following property: sec(−x)=sec(x)sec(−65π​)=sec(65π​)=sec(65π​)+1tan2(−65π​)​
Use the following property: tan(−x)=−tan(x)tan(−65π​)=−tan(65π​)=sec(65π​)+1(−tan(65π​))2​
Simplify=sec(65π​)+1tan2(65π​)​
Rewrite using trig identities:tan2(65π​)=sec2(65π​)−1
tan2(65π​)
Use the Pythagorean identity: tan2(x)+1=sec2(x)tan2(x)=sec2(x)−1=sec2(65π​)−1
=sec(65π​)+1sec2(65π​)−1​
Use the following trivial identity:sec(65π​)=−323​​
sec(65π​)
sec(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sec(x)1323​​2​2Undefined−2−2​−323​​​xπ67π​45π​34π​23π​35π​47π​611π​​sec(x)−1−323​​−2​−2Undefined22​323​​​​
=−323​​
=−323​​+1(−323​​)2−1​
Simplify −323​​+1(−323​​)2−1​:−323​+3​
−323​​+1(−323​​)2−1​
(−323​​)2−1=(323​​)2−1
(−323​​)2−1
Apply exponent rule: (−a)n=an,if n is even(−323​​)2=(323​​)2=(323​​)2−1
=−323​​+1(323​​)2−1​
Join −323​​+1:3​−2+3​​
−323​​+1
Convert element to fraction: 1=31⋅3​=−323​​+31⋅3​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=3−23​+1⋅3​
Multiply the numbers: 1⋅3=3=3−23​+3​
Factor −23​+3:3​(−2+3​)
−23​+3
3=3​3​=−23​+3​3​
Factor out common term 3​=3​(−2+3​)
=33​(−2+3​)​
Cancel 33​(−2+3​)​:3​−2+3​​
33​(−2+3​)​
Apply radical rule: 3​=321​=3321​(3​−2)​
Apply exponent rule: xbxa​=xb−a1​31321​​=31−21​1​=31−21​−2+3​​
Subtract the numbers: 1−21​=21​=321​−2+3​​
Apply radical rule: 321​=3​=3​−2+3​​
=3​−2+3​​
=3​−2+3​​(323​​)2−1​
(323​​)2=322​
(323​​)2
Apply exponent rule: (ba​)c=bcac​=32(23​)2​
Apply exponent rule: (a⋅b)n=anbn(23​)2=22(3​)2=3222(3​)2​
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=3222⋅3​
Cancel the common factor: 3=322​
=3​−2+3​​322​−1​
22=4=3​−2+3​​34​−1​
Apply the fraction rule: cb​a​=ba⋅c​=−2+3​(34​−1)3​​
Join 34​−1:31​
34​−1
Convert element to fraction: 1=31⋅3​=34​−31⋅3​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=34−1⋅3​
4−1⋅3=1
4−1⋅3
Multiply the numbers: 1⋅3=3=4−3
Subtract the numbers: 4−3=1=1
=31​
=−2+3​3​31​​
Multiply 31​3​:3​1​
31​3​
Multiply fractions: a⋅cb​=ca⋅b​=31⋅3​​
Multiply: 1⋅3​=3​=33​​
Apply radical rule: 3​=321​=3321​​
Apply exponent rule: xbxa​=xb−a1​31321​​=31−21​1​=31−21​1​
Subtract the numbers: 1−21​=21​=321​1​
Apply radical rule: 321​=3​=3​1​
=−2+3​3​1​​
Apply the fraction rule: acb​​=c⋅ab​=3​(−2+3​)1​
Expand 3​(−2+3​):−23​+3
3​(−2+3​)
Apply the distributive law: a(b+c)=ab+aca=3​,b=−2,c=3​=3​(−2)+3​3​
Apply minus-plus rules+(−a)=−a=−23​+3​3​
Apply radical rule: a​a​=a3​3​=3=−23​+3
=−23​+31​
Rationalize −23​+31​:−323​+3​
−23​+31​
Multiply by the conjugate 23​+323​+3​=(−23​+3)(23​+3)1⋅(23​+3)​
1⋅(23​+3)=23​+3
(−23​+3)(23​+3)=−3
(−23​+3)(23​+3)
Apply Difference of Two Squares Formula: (a−b)(a+b)=a2−b2a=3,b=23​=32−(23​)2
Simplify 32−(23​)2:−3
32−(23​)2
32=9
32
32=9=9
(23​)2=12
(23​)2
Apply exponent rule: (a⋅b)n=anbn=22(3​)2
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=22⋅3
22=4=4⋅3
Multiply the numbers: 4⋅3=12=12
=9−12
Subtract the numbers: 9−12=−3=−3
=−3
=−323​+3​
Apply the fraction rule: −ba​=−ba​=−323​+3​
=−323​+3​
=−323​+3​

Popular Examples

cos(2.5pi)12.4-10(0.5pi-arcsin(0.5)-0.5(1-(0.5)^2)^{1/2})sin(11/9)pi(1.24)/(tan(34))(sin(30))/(sin(22))

Frequently Asked Questions (FAQ)

  • What is the value of (tan^2(-(5pi)/6))/(sec(-(5pi)/6)+1) ?

    The value of (tan^2(-(5pi)/6))/(sec(-(5pi)/6)+1) is -(2sqrt(3)+3)/3
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024