Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

4cos(108)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

4cos(108∘)

Solution

1−5​
+1
Decimal
−1.23606…
Solution steps
4cos(108∘)
Rewrite using trig identities:cos(108∘)=4cos3(36∘)−3cos(36∘)
cos(108∘)
Write cos(108∘)as cos(3⋅36∘)=cos(3⋅36∘)
Use the following identity:cos(3x)=4cos3(x)−3cos(x)
cos(3x)
Rewrite using trig identities
cos(3x)
Rewrite as=cos(2x+x)
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(2x)cos(x)−sin(2x)sin(x)
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=cos(2x)cos(x)−2sin(x)cos(x)sin(x)
Simplify cos(2x)cos(x)−2sin(x)cos(x)sin(x):cos(x)cos(2x)−2sin2(x)cos(x)
cos(2x)cos(x)−2sin(x)cos(x)sin(x)
2sin(x)cos(x)sin(x)=2sin2(x)cos(x)
2sin(x)cos(x)sin(x)
Apply exponent rule: ab⋅ac=ab+csin(x)sin(x)=sin1+1(x)=2cos(x)sin1+1(x)
Add the numbers: 1+1=2=2cos(x)sin2(x)
=cos(x)cos(2x)−2sin2(x)cos(x)
=cos(x)cos(2x)−2sin2(x)cos(x)
=cos(x)cos(2x)−2sin2(x)cos(x)
Use the Double Angle identity: cos(2x)=2cos2(x)−1=(2cos2(x)−1)cos(x)−2sin2(x)cos(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=(2cos2(x)−1)cos(x)−2(1−cos2(x))cos(x)
Expand (2cos2(x)−1)cos(x)−2(1−cos2(x))cos(x):4cos3(x)−3cos(x)
(2cos2(x)−1)cos(x)−2(1−cos2(x))cos(x)
=cos(x)(2cos2(x)−1)−2cos(x)(1−cos2(x))
Expand cos(x)(2cos2(x)−1):2cos3(x)−cos(x)
cos(x)(2cos2(x)−1)
Apply the distributive law: a(b−c)=ab−aca=cos(x),b=2cos2(x),c=1=cos(x)2cos2(x)−cos(x)1
=2cos2(x)cos(x)−1cos(x)
Simplify 2cos2(x)cos(x)−1⋅cos(x):2cos3(x)−cos(x)
2cos2(x)cos(x)−1cos(x)
2cos2(x)cos(x)=2cos3(x)
2cos2(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos2(x)cos(x)=cos2+1(x)=2cos2+1(x)
Add the numbers: 2+1=3=2cos3(x)
1⋅cos(x)=cos(x)
1cos(x)
Multiply: 1⋅cos(x)=cos(x)=cos(x)
=2cos3(x)−cos(x)
=2cos3(x)−cos(x)
=2cos3(x)−cos(x)−2(1−cos2(x))cos(x)
Expand −2cos(x)(1−cos2(x)):−2cos(x)+2cos3(x)
−2cos(x)(1−cos2(x))
Apply the distributive law: a(b−c)=ab−aca=−2cos(x),b=1,c=cos2(x)=−2cos(x)1−(−2cos(x))cos2(x)
Apply minus-plus rules−(−a)=a=−2⋅1cos(x)+2cos2(x)cos(x)
Simplify −2⋅1⋅cos(x)+2cos2(x)cos(x):−2cos(x)+2cos3(x)
−2⋅1cos(x)+2cos2(x)cos(x)
2⋅1⋅cos(x)=2cos(x)
2⋅1cos(x)
Multiply the numbers: 2⋅1=2=2cos(x)
2cos2(x)cos(x)=2cos3(x)
2cos2(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos2(x)cos(x)=cos2+1(x)=2cos2+1(x)
Add the numbers: 2+1=3=2cos3(x)
=−2cos(x)+2cos3(x)
=−2cos(x)+2cos3(x)
=2cos3(x)−cos(x)−2cos(x)+2cos3(x)
Simplify 2cos3(x)−cos(x)−2cos(x)+2cos3(x):4cos3(x)−3cos(x)
2cos3(x)−cos(x)−2cos(x)+2cos3(x)
Group like terms=2cos3(x)+2cos3(x)−cos(x)−2cos(x)
Add similar elements: 2cos3(x)+2cos3(x)=4cos3(x)=4cos3(x)−cos(x)−2cos(x)
Add similar elements: −cos(x)−2cos(x)=−3cos(x)=4cos3(x)−3cos(x)
=4cos3(x)−3cos(x)
=4cos3(x)−3cos(x)
=4cos3(36∘)−3cos(36∘)
=4(4cos3(36∘)−3cos(36∘))
Rewrite using trig identities:cos(36∘)=45​+1​
cos(36∘)
Show that: cos(36∘)−sin(18∘)=21​
Use the following product to sum identity: 2sin(x)cos(y)=sin(x+y)−sin(x−y)2cos(36∘)sin(18∘)=sin(54∘)−sin(18∘)
Show that: 2cos(36∘)sin(18∘)=21​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
Divide both sides by sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
Use the following identity: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
Divide both sides by cos(18∘)1=4sin(18∘)cos(36∘)
Divide both sides by 221​=2sin(18∘)cos(36∘)
Substitute 21​=2sin(18∘)cos(36∘)21​=sin(54∘)−sin(18∘)
sin(54∘)=cos(90∘−54∘)21​=cos(90∘−54∘)−sin(18∘)
21​=cos(36∘)−sin(18∘)
Show that: cos(36∘)+sin(18∘)=45​​
Use the factorization rule: a2−b2=(a+b)(a−b)a=cos(36∘)+sin(18∘)(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))((cos(36∘)+sin(18∘))−(cos(36∘)−sin(18∘)))
Refine(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=2(2cos(36∘)sin(18∘))
Show that: 2cos(36∘)sin(18∘)=21​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
Divide both sides by sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
Use the following identity: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
Divide both sides by cos(18∘)1=4sin(18∘)cos(36∘)
Divide both sides by 221​=2sin(18∘)cos(36∘)
Substitute 2cos(36∘)sin(18∘)=21​(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=1
Substitute cos(36∘)−sin(18∘)=21​(cos(36∘)+sin(18∘))2−(21​)2=1
Refine(cos(36∘)+sin(18∘))2−41​=1
Add 41​ to both sides(cos(36∘)+sin(18∘))2−41​+41​=1+41​
Refine(cos(36∘)+sin(18∘))2=45​
Take the square root of both sidescos(36∘)+sin(18∘)=±45​​
cos(36∘)cannot be negativesin(18∘)cannot be negativecos(36∘)+sin(18∘)=45​​
Add the following equationscos(36∘)+sin(18∘)=25​​((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))=(25​​+21​)
Refinecos(36∘)=45​+1​
=45​+1​
=4​4(45​+1​)3−3⋅45​+1​​
Simplify 4​4(45​+1​)3−3⋅45​+1​​:1−5​
4​4(45​+1​)3−3⋅45​+1​​
4(45​+1​)3=25​+2​
4(45​+1​)3
(45​+1​)3=235​+2​
(45​+1​)3
Apply exponent rule: (ba​)c=bcac​=43(5​+1)3​
(5​+1)3=85​+16
(5​+1)3
Apply Perfect Cube Formula: (a+b)3=a3+3a2b+3ab2+b3a=5​,b=1
=(5​)3+3(5​)2⋅1+35​⋅12+13
Simplify (5​)3+3(5​)2⋅1+35​⋅12+13:85​+16
(5​)3+3(5​)2⋅1+35​⋅12+13
Apply rule 1a=112=1,13=1=(5​)3+3⋅1⋅(5​)2+3⋅1⋅5​+1
(5​)3=55​
(5​)3
Apply radical rule: a​=a21​=(521​)3
Apply exponent rule: (ab)c=abc=521​⋅3
21​⋅3=23​
21​⋅3
Multiply fractions: a⋅cb​=ca⋅b​=21⋅3​
Multiply the numbers: 1⋅3=3=23​
=523​
523​=55​
523​
523​=51+21​=51+21​
Apply exponent rule: xa+b=xaxb=51⋅521​
Refine=55​
=55​
3(5​)2⋅1=15
3(5​)2⋅1
(5​)2=5
(5​)2
Apply radical rule: a​=a21​=(521​)2
Apply exponent rule: (ab)c=abc=521​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=5
=3⋅5⋅1
Multiply the numbers: 3⋅5⋅1=15=15
35​⋅1=35​
35​⋅1
Multiply the numbers: 3⋅1=3=35​
=55​+15+35​+1
Add similar elements: 55​+35​=85​=85​+15+1
Add the numbers: 15+1=16=85​+16
=85​+16
=4385​+16​
Factor 85​+16:8(5​+2)
85​+16
Rewrite as=85​+8⋅2
Factor out common term 8=8(5​+2)
=438(5​+2)​
Factor 8:23
Factor 8=23
Factor 43:26
Factor 4=22=(22)3
Simplify (22)3:26
(22)3
Apply exponent rule: (ab)c=abc=22⋅3
Multiply the numbers: 2⋅3=6=26
=26
=2623(2+5​)​
Cancel 2623(5​+2)​:235​+2​
2623(5​+2)​
Apply exponent rule: xbxa​=xb−a1​2623​=26−31​=26−35​+2​
Subtract the numbers: 6−3=3=235​+2​
=235​+2​
=4⋅232+5​​
Multiply fractions: a⋅cb​=ca⋅b​=23(5​+2)⋅4​
Factor 4:22
Factor 4=22
=2322(2+5​)​
Cancel 23(5​+2)⋅22​:25​+2​
23(5​+2)⋅22​
Apply exponent rule: xbxa​=xb−a1​2322​=23−21​=23−25​+2​
Subtract the numbers: 3−2=1=25​+2​
=25​+2​
3⋅45​+1​=43(5​+1)​
3⋅45​+1​
Multiply fractions: a⋅cb​=ca⋅b​=4(5​+1)⋅3​
=4(22+5​​−43(1+5​)​)
Join 25​+2​−4(5​+1)⋅3​:41−5​​
25​+2​−4(5​+1)⋅3​
Least Common Multiplier of 2,4:4
2,4
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Multiply each factor the greatest number of times it occurs in either 2 or 4=2⋅2
Multiply the numbers: 2⋅2=4=4
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 4
For 25​+2​:multiply the denominator and numerator by 225​+2​=2⋅2(5​+2)⋅2​=4(5​+2)⋅2​
=4(5​+2)⋅2​−4(5​+1)⋅3​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=4(5​+2)⋅2−(5​+1)⋅3​
Expand (5​+2)⋅2−(5​+1)⋅3:1−5​
(5​+2)⋅2−(5​+1)⋅3
=2(5​+2)−3(5​+1)
Expand 2(5​+2):25​+4
2(5​+2)
Apply the distributive law: a(b+c)=ab+aca=2,b=5​,c=2=25​+2⋅2
Multiply the numbers: 2⋅2=4=25​+4
=25​+4−(5​+1)⋅3
Expand −3(5​+1):−35​−3
−3(5​+1)
Apply the distributive law: a(b+c)=ab+aca=−3,b=5​,c=1=−35​+(−3)⋅1
Apply minus-plus rules+(−a)=−a=−35​−3⋅1
Multiply the numbers: 3⋅1=3=−35​−3
=25​+4−35​−3
Simplify 25​+4−35​−3:1−5​
25​+4−35​−3
Add similar elements: 25​−35​=−5​=−5​+4−3
Add/Subtract the numbers: 4−3=1=1−5​
=1−5​
=41−5​​
=4⋅41−5​​
Multiply fractions: a⋅cb​=ca⋅b​=4(1−5​)⋅4​
Cancel the common factor: 4=1−5​
=1−5​

Popular Examples

cos(7.6)sin(70)*8100sin(37)arctan(tan(-(2pi)/(11)))arcsin((sin(60))/(300)240)

Frequently Asked Questions (FAQ)

  • What is the value of 4cos(108) ?

    The value of 4cos(108) is 1-sqrt(5)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024