Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin((3pi)/2)+tan(pi)cos(pi/2)-cot((5pi)/6)-sin((7pi)/6)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(23π​)+tan(π)cos(2π​)−cot(65π​)−sin(67π​)

Solution

−21​+3​
+1
Decimal
1.23205…
Solution steps
sin(23π​)+tan(π)cos(2π​)−cot(65π​)−sin(67π​)
tan(π)=tan(0)
tan(π)
Rewrite π as π+0=tan(π+0)
Apply the periodicity of tan: tan(x+π)=tan(x)tan(π+0)=tan(0)=tan(0)
=sin(23π​)+tan(0)cos(2π​)−cot(65π​)−sin(67π​)
Rewrite as=sin(23π​)−sin(67π​)+tan(0)cos(2π​)−cot(65π​)
Rewrite using trig identities:sin(23π​)−sin(67π​)=2sin(6π​)cos(34π​)
sin(23π​)−sin(67π​)
Use the Sum to Product identity: sin(s)−sin(t)=2sin(2s−t​)cos(2s+t​)=2sin(223π​−67π​​)cos(223π​+67π​​)
Simplify:223π​−67π​​=6π​
223π​−67π​​
Join 23π​−67π​:3π​
23π​−67π​
Least Common Multiplier of 2,6:6
2,6
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Multiply each factor the greatest number of times it occurs in either 2 or 6=2⋅3
Multiply the numbers: 2⋅3=6=6
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 6
For 23π​:multiply the denominator and numerator by 323π​=2⋅33π3​=69π​
=69π​−67π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=69π−7π​
Add similar elements: 9π−7π=2π=62π​
Cancel the common factor: 2=3π​
=23π​​
Apply the fraction rule: acb​​=c⋅ab​=3⋅2π​
Multiply the numbers: 3⋅2=6=6π​
Simplify:223π​+67π​​=34π​
223π​+67π​​
Join 23π​+67π​:38π​
23π​+67π​
Least Common Multiplier of 2,6:6
2,6
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Multiply each factor the greatest number of times it occurs in either 2 or 6=2⋅3
Multiply the numbers: 2⋅3=6=6
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 6
For 23π​:multiply the denominator and numerator by 323π​=2⋅33π3​=69π​
=69π​+67π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=69π+7π​
Add similar elements: 9π+7π=16π=616π​
Cancel the common factor: 2=38π​
=238π​​
Apply the fraction rule: acb​​=c⋅ab​=3⋅28π​
Multiply the numbers: 3⋅2=6=68π​
Cancel the common factor: 2=34π​
=2sin(6π​)cos(34π​)
=2sin(6π​)cos(34π​)+tan(0)cos(2π​)−cot(65π​)
Use the following trivial identity:sin(6π​)=21​
sin(6π​)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=21​
Rewrite using trig identities:cos(34π​)=−21​
cos(34π​)
Rewrite using trig identities:cos(π)cos(3π​)−sin(π)sin(3π​)
cos(34π​)
Write cos(34π​)as cos(π+3π​)=cos(π+3π​)
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(π)cos(3π​)−sin(π)sin(3π​)
=cos(π)cos(3π​)−sin(π)sin(3π​)
Use the following trivial identity:cos(π)=(−1)
cos(π)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=(−1)
Use the following trivial identity:cos(3π​)=21​
cos(3π​)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=21​
Use the following trivial identity:sin(π)=0
sin(π)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=0
Use the following trivial identity:sin(3π​)=23​​
sin(3π​)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=23​​
=(−1)21​−0⋅23​​
Simplify=−21​
Use the following trivial identity:tan(0)=0
tan(0)
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
=0
Use the following trivial identity:cos(2π​)=0
cos(2π​)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=0
Use the following trivial identity:cot(65π​)=−3​
cot(65π​)
cot(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cot(x)∓∞3​133​​0−33​​−1−3​​​
=−3​
=2⋅21​(−21​)+0⋅0−(−3​)
Simplify 2⋅21​(−21​)+0⋅0−(−3​):−21​+3​
2⋅21​(−21​)+0⋅0−(−3​)
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅21​⋅21​+0⋅0+3​
2⋅21​⋅21​=21​
2⋅21​⋅21​
Multiply fractions: a⋅cb​⋅ed​=c⋅ea⋅b⋅d​=2⋅21⋅1⋅2​
Cancel the common factor: 2=21⋅1​
Multiply the numbers: 1⋅1=1=21​
0⋅0=0
0⋅0
Multiply the numbers: 0⋅0=0=0
=−21​+0+3​
−21​+0+3​=−21​+3​=−21​+3​
=−21​+3​

Popular Examples

3sin^2(45)+4cos^2(45)sin(pi/5)cos((2pi)/(15))+cos(pi/5)sin((2pi)/(15))(0.02)/(tan(207))sec(31)sin(2pi-pi/3)

Frequently Asked Questions (FAQ)

  • What is the value of sin((3pi)/2)+tan(pi)cos(pi/2)-cot((5pi)/6)-sin((7pi)/6) ?

    The value of sin((3pi)/2)+tan(pi)cos(pi/2)-cot((5pi)/6)-sin((7pi)/6) is -1/2+sqrt(3)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024