Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(150)+cos(510)+tan(4110)-tan(210)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(150∘)+cos(510∘)+tan(4110∘)−tan(210∘)

Solution

−673​−3​
+1
Decimal
−1.52072…
Solution steps
sin(150∘)+cos(510∘)+tan(4110∘)−tan(210∘)
cos(510∘)=cos(150∘)
cos(510∘)
Rewrite 510∘ as 360∘+150∘=cos(360∘+150∘)
Apply the periodicity of cos: cos(x+360∘)=cos(x)cos(360∘+150∘)=cos(150∘)=cos(150∘)
=sin(150∘)+cos(150∘)+tan(4110∘)−tan(210∘)
tan(4110∘)=tan(150∘)
tan(4110∘)
Rewrite 4110∘ as 180∘⋅22+150∘=tan(180∘22+150∘)
Apply the periodicity of tan: tan(x+180∘⋅k)=tan(x)tan(180∘⋅22+150∘)=tan(150∘)=tan(150∘)
=sin(150∘)+cos(150∘)+tan(150∘)−tan(210∘)
tan(210∘)=tan(30∘)
tan(210∘)
Rewrite 210∘ as 180∘+30∘=tan(180∘+30∘)
Apply the periodicity of tan: tan(x+180∘)=tan(x)tan(180∘+30∘)=tan(30∘)=tan(30∘)
=sin(150∘)+cos(150∘)+tan(150∘)−tan(30∘)
Rewrite using trig identities:tan(150∘)=cos(150∘)sin(150∘)​
tan(150∘)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=cos(150∘)sin(150∘)​
=sin(150∘)+cos(150∘)+cos(150∘)sin(150∘)​−tan(30∘)
Simplify=cos(150∘)sin(150∘)cos(150∘)+cos2(150∘)+sin(150∘)−tan(30∘)cos(150∘)​
Use the following trivial identity:sin(150∘)=21​
sin(150∘)
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=21​
Use the following trivial identity:cos(150∘)=−23​​
cos(150∘)
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=−23​​
Use the following trivial identity:tan(30∘)=33​​
tan(30∘)
tan(x) periodicity table with 180∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​tan(x)033​​13​±∞−3​−1−33​​​​
=33​​
=−23​​21​(−23​​)+(−23​​)2+21​−33​​(−23​​)​
Simplify −23​​21​(−23​​)+(−23​​)2+21​−33​​(−23​​)​:−673​−3​
−23​​21​(−23​​)+(−23​​)2+21​−33​​(−23​​)​
Remove parentheses: (−a)=−a,−(−a)=a=−23​​−21​⋅23​​+(−23​​)2+21​+33​​⋅23​​​
−21​⋅23​​+(−23​​)2+21​+33​​⋅23​​=23​​⋅23​−3​+2​+21​+(23​​)2
−21​⋅23​​+(−23​​)2+21​+33​​⋅23​​
Group like terms=−21​⋅23​​+21​+(−23​​)2+33​​⋅23​​
Add similar elements: −21​⋅23​​+33​​⋅23​​=23​​⋅23​2−3​​
−21​⋅23​​+33​​⋅23​​
Factor out common term 23​​=23​​(−21​+33​​)
−21​+33​​=23​−3​+2​
−21​+33​​
Cancel 33​​:3​1​
33​​
Cancel 33​​:3​1​
33​​
Apply radical rule: 3​=321​=3321​​
Apply exponent rule: xbxa​=xb−a1​31321​​=31−21​1​=31−21​1​
Subtract the numbers: 1−21​=21​=321​1​
Apply radical rule: 321​=3​=3​1​
=3​1​
=−21​+3​1​
Least Common Multiplier of 2,3​:23​
2,3​
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in 2 or 3​=23​
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 23​
For 21​:multiply the denominator and numerator by 3​21​=23​1⋅3​​=23​3​​
For 3​1​:multiply the denominator and numerator by 23​1​=3​⋅21⋅2​=23​2​
=−23​3​​+23​2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=23​−3​+2​
=23​​⋅23​2−3​​
=23​​⋅23​2−3​​+21​+(−23​​)2
Apply exponent rule: (−a)n=an,if n is even(−23​​)2=(23​​)2=23​​⋅23​2−3​​+21​+(23​​)2
=−23​​23​​⋅23​2−3​​+21​+(23​​)2​
Apply the fraction rule: −ba​=−ba​=−23​​23​−3​+2​⋅23​​+21​+(23​​)2​
Apply the fraction rule: cb​a​=ba⋅c​23​​23​−3​+2​⋅23​​+21​+(23​​)2​=3​(23​−3​+2​⋅23​​+21​+(23​​)2)⋅2​=−3​(23​−3​+2​⋅23​​+21​+(23​​)2)⋅2​
23​−3​+2​⋅23​​=4−3​+2​
23​−3​+2​⋅23​​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=23​⋅2(−3​+2)3​​
Cancel the common factor: 3​=2⋅2−3​+2​
Multiply the numbers: 2⋅2=4=4−3​+2​
(23​​)2=223​
(23​​)2
Apply exponent rule: (ba​)c=bcac​=22(3​)2​
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=223​
=−3​2(21​+223​+42−3​​)​
22=4=−3​2(21​+43​+42−3​​)​
Combine the fractions 42−3​​+43​:45−3​​
Apply rule ca​±cb​=ca±b​=4−3​+2+3​
Add the numbers: 2+3=5=45−3​​
=−3​2(21​+45−3​​)​
Join 45−3​​+21​:47−3​​
45−3​​+21​
Least Common Multiplier of 4,2:4
4,2
Least Common Multiplier (LCM)
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Multiply each factor the greatest number of times it occurs in either 4 or 2=2⋅2
Multiply the numbers: 2⋅2=4=4
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 4
For 21​:multiply the denominator and numerator by 221​=2⋅21⋅2​=42​
=45−3​​+42​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=45−3​+2​
Add the numbers: 5+2=7=47−3​​
=−3​2⋅47−3​​​
Multiply 47−3​​⋅2:27−3​​
47−3​​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=4(7−3​)⋅2​
Cancel the common factor: 2=27−3​​
=−3​27−3​​​
Apply the fraction rule: acb​​=c⋅ab​=−23​7−3​​
Rationalize −23​7−3​​:−673​−3​
−23​7−3​​
Multiply by the conjugate 3​3​​=−23​3​(7−3​)3​​
(7−3​)3​=73​−3
(7−3​)3​
=3​(7−3​)
Apply the distributive law: a(b−c)=ab−aca=3​,b=7,c=3​=3​⋅7−3​3​
=73​−3​3​
Apply radical rule: a​a​=a3​3​=3=73​−3
23​3​=6
23​3​
Apply radical rule: a​a​=a3​3​=3=2⋅3
Multiply the numbers: 2⋅3=6=6
=−673​−3​
=−673​−3​
=−673​−3​

Popular Examples

1+2cos(60)sin((6pi)/(12))5*sin(20)cos(pi/2)-sin((5pi)/3)+tan((9pi)/4)-cos((5pi)/6)+tan((7pi)/6)arccos(cos((-pi)/6))

Frequently Asked Questions (FAQ)

  • What is the value of sin(150)+cos(510)+tan(4110)-tan(210) ?

    The value of sin(150)+cos(510)+tan(4110)-tan(210) is -(7sqrt(3)-3)/6
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024