Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sinh(2+i)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sinh(2+i)

Solution

2e2−cos(1)+e4cos(1)​+i2e2sin(1)+e4sin(1)​
Solution steps
sinh(2+i)
Use the Hyperbolic identity: sinh(x)=2ex−e−x​=2e2+i−e−(2+i)​
Simplify 2e2+i−e−(2+i)​:2e2−cos(−1)+e4cos(1)​+i2e2−sin(−1)+e4sin(1)​
2e2+i−e−(2+i)​
e2+i−e−(2+i)=e2(cos(1)+isin(1))−e−2(cos(−1)+isin(−1))
e2+i−e−(2+i)
Apply imaginary number rule: ea+ib=ea(cos(b)+isin(b))=e2(cos(1)+isin(1))−e−(2+i)
Apply imaginary number rule: ea+ib=ea(cos(b)+isin(b))=e2(cos(1)+isin(1))−e−2(cos(−1)+isin(−1))
=2e2(cos(1)+isin(1))−e−2(cos(−1)+isin(−1))​
e−2(cos(−1)+sin(−1)i)=e2cos(−1)+isin(−1)​
e−2(cos(−1)+sin(−1)i)
Apply exponent rule: a−b=ab1​e−2=e21​=e21​(cos(−1)+isin(−1))
Multiply fractions: a⋅cb​=ca⋅b​=e21⋅(cos(−1)+sin(−1)i)​
1⋅(cos(−1)+sin(−1)i)=cos(−1)+isin(−1)
1⋅(cos(−1)+sin(−1)i)
Multiply: 1⋅(cos(−1)+sin(−1)i)=(cos(−1)+sin(−1)i)=(cos(−1)+isin(−1))
Remove parentheses: (a)=a=cos(−1)+sin(−1)i
=e2cos(−1)+isin(−1)​
=2e2(cos(1)+isin(1))−e2cos(−1)+isin(−1)​​
Join e2(cos(1)+sin(1)i)−e2cos(−1)+sin(−1)i​:e2e4cos(1)+e4isin(1)−cos(−1)−isin(−1)​
e2(cos(1)+sin(1)i)−e2cos(−1)+sin(−1)i​
Convert element to fraction: e2(cos(1)+isin(1))=e2e2(cos(1)+sin(1)i)e2​=e2e2(cos(1)+sin(1)i)e2​−e2cos(−1)+sin(−1)i​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=e2e2(cos(1)+sin(1)i)e2−(cos(−1)+sin(−1)i)​
e2(cos(1)+sin(1)i)e2−(cos(−1)+sin(−1)i)=e4(cos(1)+isin(1))−(cos(−1)+isin(−1))
e2(cos(1)+sin(1)i)e2−(cos(−1)+sin(−1)i)
e2(cos(1)+sin(1)i)e2=e4(cos(1)+isin(1))
e2(cos(1)+sin(1)i)e2
Apply exponent rule: ab⋅ac=ab+ce2e2=e2+2=(cos(1)+sin(1)i)e2+2
Add the numbers: 2+2=4=(cos(1)+sin(1)i)e4
=e4(cos(1)+isin(1))−(cos(−1)+isin(−1))
=e2e4(cos(1)+isin(1))−(cos(−1)+isin(−1))​
Expand (cos(1)+sin(1)i)e4−(cos(−1)+sin(−1)i):e4cos(1)+e4isin(1)−cos(−1)−sin(−1)i
(cos(1)+sin(1)i)e4−(cos(−1)+sin(−1)i)
=e4(cos(1)+isin(1))−(cos(−1)+isin(−1))
Expand e4(cos(1)+sin(1)i):e4cos(1)+e4isin(1)
e4(cos(1)+sin(1)i)
Apply the distributive law: a(b+c)=ab+aca=e4,b=cos(1),c=sin(1)i=e4cos(1)+e4sin(1)i
=e4cos(1)+e4isin(1)
=e4cos(1)+e4isin(1)−(cos(−1)+sin(−1)i)
−(cos(−1)+sin(−1)i):−cos(−1)−sin(−1)i
−(cos(−1)+sin(−1)i)
Distribute parentheses=−(cos(−1))−(sin(−1)i)
Apply minus-plus rules+(−a)=−a=−cos(−1)−sin(−1)i
=e4cos(1)+e4isin(1)−cos(−1)−sin(−1)i
=e2e4cos(1)+e4isin(1)−cos(−1)−isin(−1)​
=2e2e4cos(1)+e4isin(1)−cos(−1)−isin(−1)​​
Apply the fraction rule: acb​​=c⋅ab​=e2⋅2e4cos(1)+e4isin(1)−cos(−1)−sin(−1)i​
Rewrite e2⋅2e4cos(1)+e4isin(1)−cos(−1)−sin(−1)i​ in standard complex form: 2e2e4cos(1)−cos(−1)​+2e2e4sin(1)−sin(−1)​i
e2⋅2e4cos(1)+e4isin(1)−cos(−1)−sin(−1)i​
Apply the fraction rule: ca±b​=ca​±cb​e2⋅2e4cos(1)+e4isin(1)−cos(−1)−sin(−1)i​=e2⋅2e4cos(1)​+e2⋅2e4isin(1)​−e2⋅2cos(−1)​−e2⋅2sin(−1)i​=2e2e4cos(1)​+2e2e4isin(1)​−2e2cos(−1)​−2e2isin(−1)​
Group like terms=−2e2cos(−1)​−2e2isin(−1)​+2e2e4cos(1)​+2e2e4isin(1)​
Cancel 2e2e4cos(1)​:2e2cos(1)​
2e2e4cos(1)​
Cancel 2e2e4cos(1)​:2e2cos(1)​
2e2e4cos(1)​
Apply exponent rule: xbxa​=xa−be2e4​=e4−2=2e4−2cos(1)​
Subtract the numbers: 4−2=2=2e2cos(1)​
=2e2cos(1)​
=−2e2cos(−1)​−2e2isin(−1)​+2e2cos(1)​+2e2e4isin(1)​
Cancel 2e2e4isin(1)​:2e2isin(1)​
2e2e4isin(1)​
Cancel 2e2e4isin(1)​:2e2isin(1)​
2e2e4isin(1)​
Apply exponent rule: xbxa​=xa−be2e4​=e4−2=2ie4−2sin(1)​
Subtract the numbers: 4−2=2=2e2isin(1)​
=2e2isin(1)​
=−2e2cos(−1)​−2e2isin(−1)​+2e2cos(1)​+2e2isin(1)​
Group like terms=2e2cos(1)​−2e2cos(−1)​+2e2isin(1)​−2e2isin(−1)​
Group the real part and the imaginary part of the complex number=(2e2cos(1)​−2e2cos(−1)​)+(2e2sin(1)​−2e2sin(−1)​)i
2e2sin(1)​−2e2sin(−1)​=2e2e4sin(1)−sin(−1)​
2e2sin(1)​−2e2sin(−1)​
Least Common Multiplier of 2,2e2:2e2
2,2e2
Lowest Common Multiplier (LCM)
Least Common Multiplier of 2,2:2
2,2
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Multiply each factor the greatest number of times it occurs in either 2 or 2=2
Multiply the numbers: 2=2=2
Compute an expression comprised of factors that appear either in 2 or 2e2=2e2
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 2e2
For 2e2sin(1)​:multiply the denominator and numerator by e22e2sin(1)​=2e2e2sin(1)e2​=2e2e4sin(1)​
=2e2e4sin(1)​−2e2sin(−1)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2e2e4sin(1)−sin(−1)​
=(2e2cos(1)​−2e2cos(−1)​)+2e2e4sin(1)−sin(−1)​i
2e2cos(1)​−2e2cos(−1)​=2e2e4cos(1)−cos(−1)​
2e2cos(1)​−2e2cos(−1)​
Least Common Multiplier of 2,2e2:2e2
2,2e2
Lowest Common Multiplier (LCM)
Least Common Multiplier of 2,2:2
2,2
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Multiply each factor the greatest number of times it occurs in either 2 or 2=2
Multiply the numbers: 2=2=2
Compute an expression comprised of factors that appear either in 2 or 2e2=2e2
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 2e2
For 2e2cos(1)​:multiply the denominator and numerator by e22e2cos(1)​=2e2e2cos(1)e2​=2e2e4cos(1)​
=2e2e4cos(1)​−2e2cos(−1)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2e2e4cos(1)−cos(−1)​
=2e2e4cos(1)−cos(−1)​+2e2e4sin(1)−sin(−1)​i
=2e2e4cos(1)−cos(−1)​+2e2e4sin(1)−sin(−1)​i
=2e2−cos(−1)+e4cos(1)​+i2e2−sin(−1)+e4sin(1)​
Use the following property: sin(−x)=−sin(x)sin(−1)=−sin(1)=2e2−cos(−1)+e4cos(1)​+i2e2−(−sin(1))+e4sin(1)​
Use the following property: cos(−x)=cos(x)cos(−1)=cos(1)=2e2−cos(1)+e4cos(1)​+i2e2−(−sin(1))+e4sin(1)​
Simplify=2e2−cos(1)+e4cos(1)​+i2e2sin(1)+e4sin(1)​

Popular Examples

4cot(60)-2cos(45)+tan(180)sin(32pi)cos(82.4)tan((11pi)/8)arcsin(15/19)

Frequently Asked Questions (FAQ)

  • What is the value of sinh(2+i) ?

    The value of sinh(2+i) is (-cos(1)+e^4cos(1))/(2e^2)+i(sin(1)+e^4sin(1))/(2e^2)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024