Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sinh(-arccosh(2))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sinh(−arccosh(2))

Solution

−3​
+1
Decimal
−1.73205…
Solution steps
sinh(−arccosh(2))
Use the following property: sinh(−x)=−sinh(x)sinh(−arccosh(2))=−sinh(arccosh(2))=−sinh(arccosh(2))
Rewrite using trig identities:sinh(arccosh(2))=2earccosh(2)e2arccosh(2)−1​
sinh(arccosh(2))
Use the Hyperbolic identity: sinh(x)=2ex−e−x​=2earccosh(2)−e−arccosh(2)​
2earccosh(2)−e−arccosh(2)​=2earccosh(2)e2arccosh(2)−1​
2earccosh(2)−e−arccosh(2)​
Apply exponent rule: a−b=ab1​=2earccosh(2)−earccosh(2)1​​
Join earccosh(2)−earccosh(2)1​:earccosh(2)e2arccosh(2)−1​
earccosh(2)−earccosh(2)1​
Convert element to fraction: earccosh(2)=earccosh(2)earccosh(2)earccosh(2)​=earccosh(2)earccosh(2)earccosh(2)​−earccosh(2)1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=earccosh(2)earccosh(2)earccosh(2)−1​
earccosh(2)earccosh(2)−1=e2arccosh(2)−1
earccosh(2)earccosh(2)−1
earccosh(2)earccosh(2)=e2arccosh(2)
earccosh(2)earccosh(2)
Apply exponent rule: ab⋅ac=ab+cearccosh(2)earccosh(2)=earccosh(2)+arccosh(2)=earccosh(2)+arccosh(2)
Add similar elements: arccosh(2)+arccosh(2)=2arccosh(2)=e2arccosh(2)
=e2arccosh(2)−1
=earccosh(2)e2arccosh(2)−1​
=2earccosh(2)e2arccosh(2)−1​​
Apply the fraction rule: acb​​=c⋅ab​=earccosh(2)⋅2e2arccosh(2)−1​
=2earccosh(2)e2arccosh(2)−1​
=−2earccosh(2)e2arccosh(2)−1​
Rewrite using trig identities:arccosh(2)=ln(2+3​)
arccosh(2)
Use the Hyperbolic identity: arccosh(x)=ln(x+x2−1​)=ln(2+22−1​)
Simplify=ln(2+3​)
=−2eln(2+3​)e2ln(2+3​)−1​
Simplify −2eln(2+3​)e2ln(2+3​)−1​:−3​
−2eln(2+3​)e2ln(2+3​)−1​
eln(2+3​)=2+3​
eln(2+3​)
Apply log rule: aloga​(b)=b=2+3​
=−2(2+3​)e2ln(2+3​)−1​
e2ln(2+3​)=(2+3​)2
e2ln(2+3​)
Apply exponent rule: abc=(ab)c=(eln(2+3​))2
Apply log rule: aloga​(b)=beln(2+3​)=2+3​=(2+3​)2
=−2(2+3​)(2+3​)2−1​
Simplify
−2(2+3​)(2+3​)2−1​
Expand (2+3​)2−1:6+43​
(2+3​)2−1
(2+3​)2:7+43​
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=2,b=3​
=22+2⋅23​+(3​)2
Simplify 22+2⋅23​+(3​)2:7+43​
22+2⋅23​+(3​)2
22=4
22
22=4=4
2⋅23​=43​
2⋅23​
Multiply the numbers: 2⋅2=4=43​
(3​)2=3
(3​)2
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=4+43​+3
Add the numbers: 4+3=7=7+43​
=7+43​
=7+43​−1
Subtract the numbers: 7−1=6=6+43​
=−2(2+3​)6+43​​
Cancel 2(2+3​)6+43​​:3​
2(2+3​)6+43​​
Factor 6+43​:2(3+23​)
6+43​
Rewrite as=2⋅3+2⋅23​
Factor out common term 2=2(3+23​)
=2(2+3​)2(3+23​)​
Divide the numbers: 22​=1=(2+3​)3+23​​
Factor 3+23​:3​(3​+2)
3+23​
3=3​3​=3​3​+23​
Factor out common term 3​=3​(3​+2)
=(2+3​)3​(3​+2)​
Cancel the common factor: 3​+2=3​
=−3​
=−3​
=−3​

Popular Examples

sin(pi/9)-sin((2pi)/9)-sin((3pi)/9)+sin((4pi)/9)-3cos(1/2*0)sin(pi-pi/3)sin(2)*sin(3)arccos(0.974631846)

Frequently Asked Questions (FAQ)

  • What is the value of sinh(-arccosh(2)) ?

    The value of sinh(-arccosh(2)) is -sqrt(3)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024