Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin^2((5pi)/3)+cos((5pi)/3)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin2(35π​)+cos(35π​)

Solution

45​
+1
Decimal
1.25
Solution steps
sin2(35π​)+cos(35π​)
Rewrite using trig identities:sin2(35π​)=1−cos2(35π​)
sin2(35π​)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=1−cos2(35π​)
=1−cos2(35π​)+cos(35π​)
Rewrite using trig identities:cos(35π​)=21​
cos(35π​)
Rewrite using trig identities:cos(π)cos(32π​)−sin(π)sin(32π​)
cos(35π​)
Write cos(35π​)as cos(π+32π​)=cos(π+32π​)
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(π)cos(32π​)−sin(π)sin(32π​)
=cos(π)cos(32π​)−sin(π)sin(32π​)
Use the following trivial identity:cos(π)=(−1)
cos(π)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=(−1)
Use the following trivial identity:cos(32π​)=−21​
cos(32π​)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=−21​
Use the following trivial identity:sin(π)=0
sin(π)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=0
Use the following trivial identity:sin(32π​)=23​​
sin(32π​)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=23​​
=(−1)(−21​)−0⋅23​​
Simplify=21​
=1−(21​)2+21​
Simplify 1−(21​)2+21​:45​
1−(21​)2+21​
(21​)2=221​
(21​)2
Apply exponent rule: (ba​)c=bcac​=2212​
Apply rule 1a=112=1=221​
=1−221​+21​
Convert element to fraction: 1=11​=11​−221​+21​
22=4
22
22=4=4
=11​−41​+21​
Least Common Multiplier of 1,4,2:4
1,4,2
Least Common Multiplier (LCM)
Prime factorization of 1
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Compute a number comprised of factors that appear in at least one of the following:
1,4,2
=2⋅2
Multiply the numbers: 2⋅2=4=4
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 4
For 11​:multiply the denominator and numerator by 411​=1⋅41⋅4​=44​
For 21​:multiply the denominator and numerator by 221​=2⋅21⋅2​=42​
=44​−41​+42​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=44−1+2​
Add/Subtract the numbers: 4−1+2=5=45​
=45​

Popular Examples

sec(arcsin(-1/5))arctan(150/200)cos(2pi+pi/2)(sin((23+60)/2))/(sin(60/2))6sin(2(pi/3))

Frequently Asked Questions (FAQ)

  • What is the value of sin^2((5pi)/3)+cos((5pi)/3) ?

    The value of sin^2((5pi)/3)+cos((5pi)/3) is 5/4
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024