Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

cos(-pi/4)+sin(-pi/4)

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

cos(−4π​)+sin(−4π​)

Lösung

0
Schritte zur Lösung
cos(−4π​)+sin(−4π​)
Verwende die folgende Eigenschaft: sin(−x)=−sin(x)sin(−4π​)=−sin(4π​)=cos(−4π​)−sin(4π​)
Verwende die folgende Eigenschaft: cos(−x)=cos(x)cos(−4π​)=cos(4π​)=cos(4π​)−sin(4π​)
Verwende die folgende triviale Identität:cos(4π​)=22​​
cos(4π​)
cos(x) Periodizitätstabelle mit 2πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
Verwende die folgende triviale Identität:sin(4π​)=22​​
sin(4π​)
sin(x) Periodizitätstabelle mit 2πn Zyklus:
=22​​
=22​​−22​​
Vereinfache=0

Beliebte Beispiele

arctan(2)(6/8)arctan(2)(86​)e^0cos(pi/2)e0cos(2π​)(490*sin(140))/(sin(80))sin(80∘)490⋅sin(140∘)​tan^2(210)+sqrt(3)cos(330)tan2(210∘)+3​cos(330∘)cos(1140)cos(1140∘)
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024