Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2pi>sqrt(3)tan(θ)+1>= 0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2π>3​tan(θ)+1≥0

Solution

πn≤θ<arctan(33​(2π−1)​)+πnor65π​+πn≤θ<π+πn
+2
Interval Notation
[πn,arctan(33​(2π−1)​)+πn)∪[65π​+πn,π+πn)
Decimal
πn≤θ<1.25399…+πnor2.61799…+πn≤θ<3.14159…+πn
Solution steps
2π>3​tan(θ)+1≥0
If a>u≥bthen a>uandu≥b2π>3​tan(θ)+1and3​tan(θ)+1≥0
2π>3​tan(θ)+1:−2π​+πn<θ<arctan(33​(2π−1)​)+πn
2π>3​tan(θ)+1
Switch sides3​tan(θ)+1<2π
Move 1to the right side
3​tan(θ)+1<2π
Subtract 1 from both sides3​tan(θ)+1−1<2π−1
Simplify3​tan(θ)<2π−1
3​tan(θ)<2π−1
Divide both sides by 3​
3​tan(θ)<2π−1
Divide both sides by 3​3​3​tan(θ)​<3​2π​−3​1​
Simplify
3​3​tan(θ)​<3​2π​−3​1​
Simplify 3​3​tan(θ)​:tan(θ)
3​3​tan(θ)​
Cancel the common factor: 3​=tan(θ)
Simplify 3​2π​−3​1​:33​(2π−1)​
3​2π​−3​1​
Apply rule ca​±cb​=ca±b​=3​2π−1​
Multiply by the conjugate 3​3​​=3​3​(2π−1)3​​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=33​(2π−1)​
tan(θ)<33​(2π−1)​
tan(θ)<33​(2π−1)​
tan(θ)<33​(2π−1)​
If tan(x)<athen −2π​+πn<x<arctan(a)+πn−2π​+πn<θ<arctan(33​(2π−1)​)+πn
3​tan(θ)+1≥0:−6π​+πn≤θ<2π​+πn
3​tan(θ)+1≥0
Move 1to the right side
3​tan(θ)+1≥0
Subtract 1 from both sides3​tan(θ)+1−1≥0−1
Simplify3​tan(θ)≥−1
3​tan(θ)≥−1
Divide both sides by 3​
3​tan(θ)≥−1
Divide both sides by 3​3​3​tan(θ)​≥3​−1​
Simplify
3​3​tan(θ)​≥3​−1​
Simplify 3​3​tan(θ)​:tan(θ)
3​3​tan(θ)​
Cancel the common factor: 3​=tan(θ)
Simplify 3​−1​:−33​​
3​−1​
Apply the fraction rule: b−a​=−ba​=−3​1​
Rationalize −3​1​:−33​​
−3​1​
Multiply by the conjugate 3​3​​=−3​3​1⋅3​​
1⋅3​=3​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=−33​​
=−33​​
tan(θ)≥−33​​
tan(θ)≥−33​​
tan(θ)≥−33​​
If tan(x)≥athen arctan(a)+πn≤x<2π​+πnarctan(−33​​)+πn≤θ<2π​+πn
Simplify arctan(−33​​):−6π​
arctan(−33​​)
Use the following property: arctan(−x)=−arctan(x)arctan(−33​​)=−arctan(33​​)=−arctan(33​​)
Use the following trivial identity:arctan(33​​)=6π​
arctan(33​​)
x033​​13​​arctan(x)06π​4π​3π​​arctan(x)0∘30∘45∘60∘​​
=6π​
=−6π​
−6π​+πn≤θ<2π​+πn
Combine the intervals−2π​+πn<θ<arctan(33​(2π−1)​)+πnand−6π​+πn≤θ<2π​+πn
Merge Overlapping Intervalsπn≤θ<arctan(33​(2π−1)​)+πnor65π​+πn≤θ<π+πn

Popular Examples

sin(3x)0<= x<= 2pisin(3x)0≤x≤2πtan(θ)=-32\land csc(θ)>0tan(θ)=−32andcsc(θ)>0sin(θ)<0\land tan(θ)>0sin(θ)<0andtan(θ)>0-1<sin^2(x)<1−1<sin2(x)<1sin(θ)=(sqrt(3))/2 \land tan(θ)>0sin(θ)=23​​andtan(θ)>0
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024