Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(2sin^2(x)-1)/(cos(x))<= 0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(x)2sin2(x)−1​≤0

Solution

−4π​+2πn≤x≤4π​+2πnor2π​+2πn<x≤43π​+2πnor45π​+2πn≤x<23π​+2πn
+2
Interval Notation
[−4π​+2πn,4π​+2πn]∪(2π​+2πn,43π​+2πn]∪[45π​+2πn,23π​+2πn)
Decimal
−0.78539…+2πn≤x≤0.78539…+2πnor1.57079…+2πn<x≤2.35619…+2πnor3.92699…+2πn≤x<4.71238…+2πn
Solution steps
cos(x)2sin2(x)−1​≤0
Use the following identity: cos2(x)+sin2(x)=1Therefore sin2(x)=1−cos2(x)cos(x)2(1−cos2(x))−1​≤0
Simplify cos(x)2(1−cos2(x))−1​:cos(x)−2cos2(x)+1​
cos(x)2(1−cos2(x))−1​
Expand 2(1−cos2(x))−1:−2cos2(x)+1
2(1−cos2(x))−1
Expand 2(1−cos2(x)):2−2cos2(x)
2(1−cos2(x))
Apply the distributive law: a(b−c)=ab−aca=2,b=1,c=cos2(x)=2⋅1−2cos2(x)
Multiply the numbers: 2⋅1=2=2−2cos2(x)
=2−2cos2(x)−1
Simplify 2−2cos2(x)−1:−2cos2(x)+1
2−2cos2(x)−1
Group like terms=−2cos2(x)+2−1
Add/Subtract the numbers: 2−1=1=−2cos2(x)+1
=−2cos2(x)+1
=cos(x)−2cos2(x)+1​
cos(x)−2cos2(x)+1​≤0
Let: u=cos(x)u−2u2+1​≤0
u−2u2+1​≤0:−22​​≤u<0oru≥22​​
u−2u2+1​≤0
Factor u−2u2+1​:u−(2​u+1)(2​u−1)​
u−2u2+1​
Factor −2u2+1:−(2​u+1)(2​u−1)
−2u2+1
Factor out common term −1=−(2u2−1)
Factor 2u2−1:(2​u+1)(2​u−1)
2u2−1
Rewrite 2u2−1 as (2​u)2−12
2u2−1
Apply radical rule: a=(a​)22=(2​)2=(2​)2u2−1
Rewrite 1 as 12=(2​)2u2−12
Apply exponent rule: ambm=(ab)m(2​)2u2=(2​u)2=(2​u)2−12
=(2​u)2−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(2​u)2−12=(2​u+1)(2​u−1)=(2​u+1)(2​u−1)
=−(2​u+1)(2​u−1)
=u−(2​u+1)(2​u−1)​
u−(2​u+1)(2​u−1)​≤0
Multiply both sides by −1 (reverse the inequality)u(−(2​u+1)(2​u−1))(−1)​≥0⋅(−1)
Simplifyu(2​u+1)(2​u−1)​≥0
Identify the intervals
Find the signs of the factors of u(2​u+1)(2​u−1)​
Find the signs of 2​u+1
2​u+1=0:u=−22​​
2​u+1=0
Move 1to the right side
2​u+1=0
Subtract 1 from both sides2​u+1−1=0−1
Simplify2​u=−1
2​u=−1
Divide both sides by 2​
2​u=−1
Divide both sides by 2​2​2​u​=2​−1​
Simplify
2​2​u​=2​−1​
Simplify 2​2​u​:u
2​2​u​
Cancel the common factor: 2​=u
Simplify 2​−1​:−22​​
2​−1​
Apply the fraction rule: b−a​=−ba​=−2​1​
Rationalize −2​1​:−22​​
−2​1​
Multiply by the conjugate 2​2​​=−2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=−22​​
=−22​​
u=−22​​
u=−22​​
u=−22​​
2​u+1<0:u<−22​​
2​u+1<0
Move 1to the right side
2​u+1<0
Subtract 1 from both sides2​u+1−1<0−1
Simplify2​u<−1
2​u<−1
Divide both sides by 2​
2​u<−1
Divide both sides by 2​2​2​u​<2​−1​
Simplify
2​2​u​<2​−1​
Simplify 2​2​u​:u
2​2​u​
Cancel the common factor: 2​=u
Simplify 2​−1​:−22​​
2​−1​
Apply the fraction rule: b−a​=−ba​=−2​1​
Rationalize −2​1​:−22​​
−2​1​
Multiply by the conjugate 2​2​​=−2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=−22​​
=−22​​
u<−22​​
u<−22​​
u<−22​​
2​u+1>0:u>−22​​
2​u+1>0
Move 1to the right side
2​u+1>0
Subtract 1 from both sides2​u+1−1>0−1
Simplify2​u>−1
2​u>−1
Divide both sides by 2​
2​u>−1
Divide both sides by 2​2​2​u​>2​−1​
Simplify
2​2​u​>2​−1​
Simplify 2​2​u​:u
2​2​u​
Cancel the common factor: 2​=u
Simplify 2​−1​:−22​​
2​−1​
Apply the fraction rule: b−a​=−ba​=−2​1​
Rationalize −2​1​:−22​​
−2​1​
Multiply by the conjugate 2​2​​=−2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=−22​​
=−22​​
u>−22​​
u>−22​​
u>−22​​
Find the signs of 2​u−1
2​u−1=0:u=22​​
2​u−1=0
Move 1to the right side
2​u−1=0
Add 1 to both sides2​u−1+1=0+1
Simplify2​u=1
2​u=1
Divide both sides by 2​
2​u=1
Divide both sides by 2​2​2​u​=2​1​
Simplify
2​2​u​=2​1​
Simplify 2​2​u​:u
2​2​u​
Cancel the common factor: 2​=u
Simplify 2​1​:22​​
2​1​
Multiply by the conjugate 2​2​​=2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​​
u=22​​
u=22​​
u=22​​
2​u−1<0:u<22​​
2​u−1<0
Move 1to the right side
2​u−1<0
Add 1 to both sides2​u−1+1<0+1
Simplify2​u<1
2​u<1
Divide both sides by 2​
2​u<1
Divide both sides by 2​2​2​u​<2​1​
Simplify
2​2​u​<2​1​
Simplify 2​2​u​:u
2​2​u​
Cancel the common factor: 2​=u
Simplify 2​1​:22​​
2​1​
Multiply by the conjugate 2​2​​=2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​​
u<22​​
u<22​​
u<22​​
2​u−1>0:u>22​​
2​u−1>0
Move 1to the right side
2​u−1>0
Add 1 to both sides2​u−1+1>0+1
Simplify2​u>1
2​u>1
Divide both sides by 2​
2​u>1
Divide both sides by 2​2​2​u​>2​1​
Simplify
2​2​u​>2​1​
Simplify 2​2​u​:u
2​2​u​
Cancel the common factor: 2​=u
Simplify 2​1​:22​​
2​1​
Multiply by the conjugate 2​2​​=2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​​
u>22​​
u>22​​
u>22​​
Find the signs of u
u=0
u<0
u>0
Find singularity points
Find the zeros of the denominator u:u=0
Summarize in a table:2​u+12​u−1uu(2​u+1)(2​u−1)​​u<−22​​−−−−​u=−22​​0−−0​−22​​<u<0+−−+​u=0+−0Undefined​0<u<22​​+−+−​u=22​​+0+0​u>22​​++++​​
Identify the intervals that satisfy the required condition: ≥0u=−22​​or−22​​<u<0oru=22​​oru>22​​
Merge Overlapping Intervals
−22​​≤u<0oru=22​​oru>22​​
The union of two intervals is the set of numbers which are in either interval
u=−22​​or−22​​<u<0
−22​​≤u<0
The union of two intervals is the set of numbers which are in either interval
−22​​≤u<0oru=22​​
−22​​≤u<0oru=22​​
The union of two intervals is the set of numbers which are in either interval
−22​​≤u<0oru=22​​oru>22​​
−22​​≤u<0oru≥22​​
−22​​≤u<0oru≥22​​
−22​​≤u<0oru≥22​​
−22​​≤u<0oru≥22​​
Substitute back u=cos(x)−22​​≤cos(x)<0orcos(x)≥22​​
−22​​≤cos(x)<0:2π​+2πn<x≤43π​+2πnor45π​+2πn≤x<23π​+2πn
−22​​≤cos(x)<0
If a≤u<bthen a≤uandu<b−22​​≤cos(x)andcos(x)<0
−22​​≤cos(x):−43π​+2πn≤x≤43π​+2πn
−22​​≤cos(x)
Switch sidescos(x)≥−22​​
For cos(x)≥a, if −1<a<1 then −arccos(a)+2πn≤x≤arccos(a)+2πn−arccos(−22​​)+2πn≤x≤arccos(−22​​)+2πn
Simplify −arccos(−22​​):−43π​
−arccos(−22​​)
Use the following trivial identity:arccos(−22​​)=43π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=−43π​
Simplify arccos(−22​​):43π​
arccos(−22​​)
Use the following trivial identity:arccos(−22​​)=43π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=43π​
−43π​+2πn≤x≤43π​+2πn
cos(x)<0:2π​+2πn<x<23π​+2πn
cos(x)<0
For cos(x)<a, if −1<a≤1 then arccos(a)+2πn<x<2π−arccos(a)+2πnarccos(0)+2πn<x<2π−arccos(0)+2πn
Simplify arccos(0):2π​
arccos(0)
Use the following trivial identity:arccos(0)=2π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=2π​
Simplify 2π−arccos(0):23π​
2π−arccos(0)
Use the following trivial identity:arccos(0)=2π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=2π−2π​
Simplify
2π−2π​
Convert element to fraction: 2π=22π2​=22π2​−2π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=22π2−π​
2π2−π=3π
2π2−π
Multiply the numbers: 2⋅2=4=4π−π
Add similar elements: 4π−π=3π=3π
=23π​
=23π​
2π​+2πn<x<23π​+2πn
Combine the intervals−43π​+2πn≤x≤43π​+2πnand2π​+2πn<x<23π​+2πn
Merge Overlapping Intervals2π​+2πn<x≤43π​+2πnor45π​+2πn≤x<23π​+2πn
cos(x)≥22​​:−4π​+2πn≤x≤4π​+2πn
cos(x)≥22​​
For cos(x)≥a, if −1<a<1 then −arccos(a)+2πn≤x≤arccos(a)+2πn−arccos(22​​)+2πn≤x≤arccos(22​​)+2πn
Simplify −arccos(22​​):−4π​
−arccos(22​​)
Use the following trivial identity:arccos(22​​)=4π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=−4π​
Simplify arccos(22​​):4π​
arccos(22​​)
Use the following trivial identity:arccos(22​​)=4π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=4π​
−4π​+2πn≤x≤4π​+2πn
Combine the intervals(2π​+2πn<x≤43π​+2πnor45π​+2πn≤x<23π​+2πn)or−4π​+2πn≤x≤4π​+2πn
Merge Overlapping Intervals−4π​+2πn≤x≤4π​+2πnor2π​+2πn<x≤43π​+2πnor45π​+2πn≤x<23π​+2πn

Popular Examples

8sin^3(t)<08sin3(t)<0pi/2-arctan(e^x)>0.12π​−arctan(ex)>0.1arctan(x/y)>0arctan(yx​)>0cos^2(x)-sin^2(x)>0cos2(x)−sin2(x)>0cos^2(x)>sin^2(x)cos2(x)>sin2(x)
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024