Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(θ)>3cot(θ)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(θ)>3cot(θ)

Solution

3π​+πn<θ<2π​+πnor32π​+πn<θ<π+πn
+2
Interval Notation
(3π​+πn,2π​+πn)∪(32π​+πn,π+πn)
Decimal
1.04719…+πn<θ<1.57079…+πnor2.09439…+πn<θ<3.14159…+πn
Solution steps
tan(θ)>3cot(θ)
Move 3cot(θ)to the left side
tan(θ)>3cot(θ)
Subtract 3cot(θ) from both sidestan(θ)−3cot(θ)>3cot(θ)−3cot(θ)
tan(θ)−3cot(θ)>0
tan(θ)−3cot(θ)>0
Periodicity of tan(θ)−3cot(θ):π
The compound periodicity of the sum of periodic functions is the least common multiplier of the periodstan(θ),3cot(θ)
Periodicity of tan(θ):π
Periodicity of tan(x)is π=π
Periodicity of 3cot(θ):π
Periodicity of a⋅cot(bx+c)+d=∣b∣periodicityofcot(x)​Periodicity of cot(x)is π=∣1∣π​
Simplify=π
Combine periods: π,π
=π
Express with sin, cos
tan(θ)−3cot(θ)>0
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​cos(θ)sin(θ)​−3cot(θ)>0
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​cos(θ)sin(θ)​−3⋅sin(θ)cos(θ)​>0
cos(θ)sin(θ)​−3⋅sin(θ)cos(θ)​>0
Simplify cos(θ)sin(θ)​−3⋅sin(θ)cos(θ)​:cos(θ)sin(θ)sin2(θ)−3cos2(θ)​
cos(θ)sin(θ)​−3⋅sin(θ)cos(θ)​
Multiply 3⋅sin(θ)cos(θ)​:sin(θ)3cos(θ)​
3⋅sin(θ)cos(θ)​
Multiply fractions: a⋅cb​=ca⋅b​=sin(θ)cos(θ)⋅3​
=cos(θ)sin(θ)​−sin(θ)3cos(θ)​
Least Common Multiplier of cos(θ),sin(θ):cos(θ)sin(θ)
cos(θ),sin(θ)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in cos(θ) or sin(θ)=cos(θ)sin(θ)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM cos(θ)sin(θ)
For cos(θ)sin(θ)​:multiply the denominator and numerator by sin(θ)cos(θ)sin(θ)​=cos(θ)sin(θ)sin(θ)sin(θ)​=cos(θ)sin(θ)sin2(θ)​
For sin(θ)cos(θ)⋅3​:multiply the denominator and numerator by cos(θ)sin(θ)cos(θ)⋅3​=sin(θ)cos(θ)cos(θ)⋅3cos(θ)​=cos(θ)sin(θ)3cos2(θ)​
=cos(θ)sin(θ)sin2(θ)​−cos(θ)sin(θ)3cos2(θ)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(θ)sin(θ)sin2(θ)−3cos2(θ)​
cos(θ)sin(θ)sin2(θ)−3cos2(θ)​>0
Find the zeroes and undifined points of cos(θ)sin(θ)sin2(θ)−3cos2(θ)​for 0≤θ<π
To find the zeroes, set the inequality to zerocos(θ)sin(θ)sin2(θ)−3cos2(θ)​=0
cos(θ)sin(θ)sin2(θ)−3cos2(θ)​=0,0≤θ<π:θ=32π​,θ=3π​
cos(θ)sin(θ)sin2(θ)−3cos2(θ)​=0,0≤θ<π
g(x)f(x)​=0⇒f(x)=0sin2(θ)−3cos2(θ)=0
Factor sin2(θ)−3cos2(θ):(sin(θ)+3​cos(θ))(sin(θ)−3​cos(θ))
sin2(θ)−3cos2(θ)
Rewrite sin2(θ)−3cos2(θ) as sin2(θ)−(3​cos(θ))2
sin2(θ)−3cos2(θ)
Apply radical rule: a=(a​)23=(3​)2=sin2(θ)−(3​)2cos2(θ)
Apply exponent rule: ambm=(ab)m(3​)2cos2(θ)=(3​cos(θ))2=sin2(θ)−(3​cos(θ))2
=sin2(θ)−(3​cos(θ))2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)sin2(θ)−(3​cos(θ))2=(sin(θ)+3​cos(θ))(sin(θ)−3​cos(θ))=(sin(θ)+3​cos(θ))(sin(θ)−3​cos(θ))
(sin(θ)+3​cos(θ))(sin(θ)−3​cos(θ))=0
Solving each part separatelysin(θ)+3​cos(θ)=0orsin(θ)−3​cos(θ)=0
sin(θ)+3​cos(θ)=0,0≤θ<π:θ=32π​
sin(θ)+3​cos(θ)=0,0≤θ<π
Rewrite using trig identities
sin(θ)+3​cos(θ)=0
Divide both sides by cos(θ),cos(θ)=0cos(θ)sin(θ)+3​cos(θ)​=cos(θ)0​
Simplifycos(θ)sin(θ)​+3​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)tan(θ)+3​=0
tan(θ)+3​=0
Move 3​to the right side
tan(θ)+3​=0
Subtract 3​ from both sidestan(θ)+3​−3​=0−3​
Simplifytan(θ)=−3​
tan(θ)=−3​
General solutions for tan(θ)=−3​
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
θ=32π​+πn
θ=32π​+πn
Solutions for the range 0≤θ<πθ=32π​
sin(θ)−3​cos(θ)=0,0≤θ<π:θ=3π​
sin(θ)−3​cos(θ)=0,0≤θ<π
Rewrite using trig identities
sin(θ)−3​cos(θ)=0
Divide both sides by cos(θ),cos(θ)=0cos(θ)sin(θ)−3​cos(θ)​=cos(θ)0​
Simplifycos(θ)sin(θ)​−3​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)tan(θ)−3​=0
tan(θ)−3​=0
Move 3​to the right side
tan(θ)−3​=0
Add 3​ to both sidestan(θ)−3​+3​=0+3​
Simplifytan(θ)=3​
tan(θ)=3​
General solutions for tan(θ)=3​
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
θ=3π​+πn
θ=3π​+πn
Solutions for the range 0≤θ<πθ=3π​
Combine all the solutionsθ=32π​,θ=3π​
Find the undefined points:θ=2π​,θ=0
Find the zeros of the denominatorcos(θ)sin(θ)=0
Solving each part separatelycos(θ)=0orsin(θ)=0
cos(θ)=0,0≤θ<π:θ=2π​
cos(θ)=0,0≤θ<π
General solutions for cos(θ)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
θ=2π​+2πn,θ=23π​+2πn
θ=2π​+2πn,θ=23π​+2πn
Solutions for the range 0≤θ<πθ=2π​
sin(θ)=0,0≤θ<π:θ=0
sin(θ)=0,0≤θ<π
General solutions for sin(θ)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
θ=0+2πn,θ=π+2πn
θ=0+2πn,θ=π+2πn
Solve θ=0+2πn:θ=2πn
θ=0+2πn
0+2πn=2πnθ=2πn
θ=2πn,θ=π+2πn
Solutions for the range 0≤θ<πθ=0
Combine all the solutionsθ=2π​,θ=0
0,3π​,2π​,32π​
Identify the intervals0<θ<3π​,3π​<θ<2π​,2π​<θ<32π​,32π​<θ<π
Summarize in a table:sin2(θ)−3cos2(θ)cos(θ)sin(θ)cos(θ)sin(θ)sin2(θ)−3cos2(θ)​​θ=0−+0Undefined​0<θ<3π​−++−​θ=3π​0++0​3π​<θ<2π​++++​θ=2π​+0+Undefined​2π​<θ<32π​+−+−​θ=32π​0−+0​32π​<θ<π−−++​θ=π−−0Undefined​​
Identify the intervals that satisfy the required condition: >03π​<θ<2π​or32π​<θ<π
Apply the periodicity of tan(θ)−3cot(θ)3π​+πn<θ<2π​+πnor32π​+πn<θ<π+πn

Popular Examples

4tan(x)>4,(-pi/2 , pi/2)4tan(x)>4,(−2π​,2π​)solvefor x,sin(x+30)=tan(10)0<x<360solveforx,sin(x+30∘)=tan(10∘)0<x<360cos(x)>sin^2(x)-cos^2(x)cos(x)>sin2(x)−cos2(x)cos(y)<0cos(y)<0cos(x)-1>= 2cos(x)−1≥2
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024