Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

9^{1+sin^2(pix)}+30*9^{cos^2(pix)}<= 117

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

91+sin2(πx)+30⋅9cos2(πx)≤117

Solution

Falseforallx∈R
Solution steps
91+sin2(πx)+30⋅9cos2(πx)≤117
Use the following identity: cos2(x)+sin2(x)=1Therefore cos2(x)=1−sin2(x)91+sin2(πx)+30⋅91−sin2(πx)≤117
Simplify 91+sin2(πx)+30⋅91−sin2(πx):91+sin2(πx)+10⋅3−2sin2(πx)+3
91+sin2(πx)+30⋅91−sin2(πx)
30⋅91−sin2(πx)=10⋅3−2sin2(πx)+3
30⋅91−sin2(πx)
Factor integer 30=3⋅10=3⋅10⋅91−sin2(πx)
Factor integer 9=32=3⋅10(32)1−sin2(πx)
Apply exponent rule: (ab)c=abc(32)1−sin2(πx)=32(1−sin2(πx))=3⋅10⋅32(1−sin2(πx))
Apply exponent rule: ab⋅ac=ab+c3⋅32(1−sin2(πx))=31+2(−sin2(πx)+1)=10⋅31+2(1−sin2(πx))
31+2(1−sin2(πx))=3−2sin2(πx)+3
31+2(1−sin2(πx))
Expand 1+2(1−sin2(πx)):−2sin2(πx)+3
1+2(1−sin2(πx))
Expand 2(1−sin2(πx)):2−2sin2(πx)
2(1−sin2(πx))
Apply the distributive law: a(b−c)=ab−aca=2,b=1,c=sin2(πx)=2⋅1−2sin2(πx)
Multiply the numbers: 2⋅1=2=2−2sin2(πx)
=1+2−2sin2(πx)
Add the numbers: 1+2=3=−2sin2(πx)+3
=3−2sin2(πx)+3
=10⋅3−2sin2(πx)+3
=9sin2(πx)+1+10⋅3−2sin2(πx)+3
91+sin2(πx)+10⋅3−2sin2(πx)+3≤117
Apply exponent rules
91+sin2(πx)+10⋅3−2sin2(πx)+3≤117
Apply exponent rule: ab+c=ab⋅ac91+sin2(πx)=9⋅9sin2(πx)9⋅9sin2(πx)+10⋅3−2sin2(πx)+3≤117
Apply exponent rule: ab−c=acab​3−2sin2(πx)+3=32sin2(πx)33​9⋅9sin2(πx)+10⋅32sin2(πx)33​≤117
If f(x)>0 we can multiply or devide both sides of inequality by f(x)32sin2(πx) is greater than 0 for all x9⋅9sin2(πx)⋅32sin2(πx)+10⋅32sin2(πx)33​⋅32sin2(πx)≤117⋅32sin2(πx)
Simplify9⋅9sin2(πx)⋅32sin2(πx)+270≤117⋅32sin2(πx)
Apply exponent rule: abc=(ab)c32sin2(πx)=(3sin2(πx))29⋅9sin2(πx)(3sin2(πx))2+270≤117(3sin2(πx))2
Apply exponent rule: abc=(ab)c32sin2(πx)=(3sin2(πx))29⋅9sin2(πx)(3sin2(πx))2+270≤117(3sin2(πx))2
Rewrite 9sin2(πx) as 32sin2(πx)
9sin2(πx)
9=32=(32)sin2(πx)
Apply exponent rule: (ab)c=abc(32)sin2(πx)=32sin2(πx)=32sin2(πx)
Apply exponent rule: abc=(ab)c32sin2(πx)=(3sin2(πx))29(3sin2(πx))2(3sin2(πx))2+270≤117(3sin2(πx))2
9(3sin2(πx))2(3sin2(πx))2+270≤117(3sin2(πx))2
Let v=3sin2(πx)9v2v2+270≤117v2
9v2v2+270≤117v2:−10​≤v≤−3​or3​≤v≤10​
9v2v2+270≤117v2
Rewrite in standard form
9v2v2+270≤117v2
Simplify 9v2v2+270:9v4+270
9v2v2+270
9v2v2=9v4
9v2v2
Apply exponent rule: ab⋅ac=ab+cv2v2=v2+2=9v2+2
Add the numbers: 2+2=4=9v4
=9v4+270
9v4+270≤117v2
Subtract 117v2 from both sides9v4+270−117v2≤117v2−117v2
Simplify9v4+270−117v2≤0
Divide both sides by 999v4​+9270​−9117v2​≤90​
Refine 99v4​+9270​−9117v2​≤90​:v4−13v2+30≤0
99v4​+9270​−9117v2​≤90​
Simplify 99v4​+9270​−9117v2​:v4−13v2+30
99v4​+9270​−9117v2​
Divide the numbers: 99​=1=v4+9270​−9117v2​
Divide the numbers: 9270​=30=v4+30−9117v2​
Divide the numbers: 9117​=13=v4+30−13v2
Rewrite in standard form=v4−13v2+30
90​=0
90​
Apply rule a0​=0,a=0=0
v4−13v2+30≤0
v4−13v2+30≤0
v4−13v2+30≤0
Factor v4−13v2+30:(v+3​)(v−3​)(v+10​)(v−10​)
v4−13v2+30
Let u=v2=u2−13u+30
Factor u2−13u+30:(u−3)(u−10)
u2−13u+30
Break the expression into groups
u2−13u+30
Definition
Factors of 30:1,2,3,5,6,10,15,30
30
Divisors (Factors)
Find the Prime factors of 30:2,3,5
30
30divides by 230=15⋅2=2⋅15
15divides by 315=5⋅3=2⋅3⋅5
2,3,5 are all prime numbers, therefore no further factorization is possible=2⋅3⋅5
Multiply the prime factors of 30:6,10,15
2⋅3=62⋅5=10
6,10,15
6,10,15
Add the prime factors: 2,3,5
Add 1 and the number 30 itself1,30
The factors of 301,2,3,5,6,10,15,30
Negative factors of 30:−1,−2,−3,−5,−6,−10,−15,−30
Multiply the factors by −1 to get the negative factors−1,−2,−3,−5,−6,−10,−15,−30
For every two factors such that u∗v=30,check if u+v=−13
Check u=1,v=30:u∗v=30,u+v=31⇒FalseCheck u=2,v=15:u∗v=30,u+v=17⇒False
u=−3,v=−10
Group into (ax2+ux)+(vx+c)(u2−3u)+(−10u+30)
=(u2−3u)+(−10u+30)
Factor out ufrom u2−3u:u(u−3)
u2−3u
Apply exponent rule: ab+c=abacu2=uu=uu−3u
Factor out common term u=u(u−3)
Factor out −10from −10u+30:−10(u−3)
−10u+30
Rewrite 30 as 10⋅3=−10u+10⋅3
Factor out common term −10=−10(u−3)
=u(u−3)−10(u−3)
Factor out common term u−3=(u−3)(u−10)
=(u−3)(u−10)
Substitute back u=v2=(v2−3)(v2−10)
Factor v2−3:(v+3​)(v−3​)
v2−3
Apply radical rule: a=(a​)23=(3​)2=v2−(3​)2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)v2−(3​)2=(v+3​)(v−3​)=(v+3​)(v−3​)
=(v+3​)(v−3​)(v2−10)
Factor v2−10:(v+10​)(v−10​)
v2−10
Apply radical rule: a=(a​)210=(10​)2=v2−(10​)2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)v2−(10​)2=(v+10​)(v−10​)=(v+10​)(v−10​)
=(v+3​)(v−3​)(v+10​)(v−10​)
(v+3​)(v−3​)(v+10​)(v−10​)≤0
Identify the intervals
Find the signs of the factors of (v+3​)(v−3​)(v+10​)(v−10​)
Find the signs of v+3​
v+3​=0:v=−3​
v+3​=0
Move 3​to the right side
v+3​=0
Subtract 3​ from both sidesv+3​−3​=0−3​
Simplifyv=−3​
v=−3​
v+3​<0:v<−3​
v+3​<0
Move 3​to the right side
v+3​<0
Subtract 3​ from both sidesv+3​−3​<0−3​
Simplifyv<−3​
v<−3​
v+3​>0:v>−3​
v+3​>0
Move 3​to the right side
v+3​>0
Subtract 3​ from both sidesv+3​−3​>0−3​
Simplifyv>−3​
v>−3​
Find the signs of v−3​
v−3​=0:v=3​
v−3​=0
Move 3​to the right side
v−3​=0
Add 3​ to both sidesv−3​+3​=0+3​
Simplifyv=3​
v=3​
v−3​<0:v<3​
v−3​<0
Move 3​to the right side
v−3​<0
Add 3​ to both sidesv−3​+3​<0+3​
Simplifyv<3​
v<3​
v−3​>0:v>3​
v−3​>0
Move 3​to the right side
v−3​>0
Add 3​ to both sidesv−3​+3​>0+3​
Simplifyv>3​
v>3​
Find the signs of v+10​
v+10​=0:v=−10​
v+10​=0
Move 10​to the right side
v+10​=0
Subtract 10​ from both sidesv+10​−10​=0−10​
Simplifyv=−10​
v=−10​
v+10​<0:v<−10​
v+10​<0
Move 10​to the right side
v+10​<0
Subtract 10​ from both sidesv+10​−10​<0−10​
Simplifyv<−10​
v<−10​
v+10​>0:v>−10​
v+10​>0
Move 10​to the right side
v+10​>0
Subtract 10​ from both sidesv+10​−10​>0−10​
Simplifyv>−10​
v>−10​
Find the signs of v−10​
v−10​=0:v=10​
v−10​=0
Move 10​to the right side
v−10​=0
Add 10​ to both sidesv−10​+10​=0+10​
Simplifyv=10​
v=10​
v−10​<0:v<10​
v−10​<0
Move 10​to the right side
v−10​<0
Add 10​ to both sidesv−10​+10​<0+10​
Simplifyv<10​
v<10​
v−10​>0:v>10​
v−10​>0
Move 10​to the right side
v−10​>0
Add 10​ to both sidesv−10​+10​>0+10​
Simplifyv>10​
v>10​
Summarize in a table:v+3​v−3​v+10​v−10​(v+3​)(v−3​)(v+10​)(v−10​)​v<−10​−−−−+​v=−10​−−0−0​−10​<v<−3​−−+−−​v=−3​0−+−0​−3​<v<3​+−+−+​v=3​+0+−0​3​<v<10​+++−−​v=10​+++00​v>10​+++++​​
Identify the intervals that satisfy the required condition: ≤0v=−10​or−10​<v<−3​orv=−3​orv=3​or3​<v<10​orv=10​
Merge Overlapping Intervals
−10​≤v≤−3​or3​≤v<10​orv=10​
The union of two intervals is the set of numbers which are in either interval
v=−10​or−10​<v<−3​
−10​≤v<−3​
The union of two intervals is the set of numbers which are in either interval
−10​≤v<−3​orv=−3​
−10​≤v≤−3​
The union of two intervals is the set of numbers which are in either interval
−10​≤v≤−3​orv=3​
−10​≤v≤−3​orv=3​
The union of two intervals is the set of numbers which are in either interval
−10​≤v≤−3​orv=3​or3​<v<10​
−10​≤v≤−3​or3​≤v<10​
The union of two intervals is the set of numbers which are in either interval
−10​≤v≤−3​or3​≤v<10​orv=10​
−10​≤v≤−3​or3​≤v≤10​
−10​≤v≤−3​or3​≤v≤10​
−10​≤v≤−3​or3​≤v≤10​
−10​≤v≤−3​or3​≤v≤10​
Substitute back v=3sin2(πx)−10​≤3sin2(πx)≤−3​or3​≤3sin2(πx)≤10​
−10​≤3sin2(πx)≤−3​:False for all x∈R
−10​≤3sin2(πx)≤−3​
If a≤u≤bthen a≤uandu≤b−10​≤3sin2(πx)and3sin2(πx)≤−3​
−10​≤3sin2(πx):True for all x∈R
−10​≤3sin2(πx)
Switch sides3sin2(πx)≥−10​
Apply exponent rules
3sin2(πx)≥−10​
If a>0,af(x)is greater than 0a=3Trueforallx∈R
Trueforallx
Trueforallx∈R
3sin2(πx)≤−3​:False for all x∈R
3sin2(πx)≤−3​
Apply exponent rules
3sin2(πx)≤−3​
If a>0,af(x)is greater than 0a=3Falseforallx∈R
NoSolutionforx∈R
Falseforallx∈R
Combine the intervalsTrueforallx∈RandFalseforallx∈R
Merge Overlapping Intervals
Trueforallx∈RandFalseforallx∈R
The intersection of two intervals is the set of numbers which are in both intervals
True for all x∈RandFalse for all x∈R
Falseforallx∈R
Falseforallx∈R
3​≤3sin2(πx)≤10​:False for all x∈R
3​≤3sin2(πx)≤10​
If a≤u≤bthen a≤uandu≤b3​≤3sin2(πx)and3sin2(πx)≤10​
3​≤3sin2(πx):arcsin(21​​)+2πn≤πx≤π−arcsin(21​​)+2πn
3​≤3sin2(πx)
Apply exponent rules
3​≤3sin2(πx)
If a>1,thenaf(x)≤ag(x) is equivalent to f(x)≤g(x)a=3,f(x)=21​,g(x)=sin2(πx)21​≤sin2(πx)
21​≤sin2(πx)
21​≤sin2(πx):arcsin(21​​)+2πn≤πx≤π−arcsin(21​​)+2πn
21​≤sin2(πx)
Switch sidessin2(πx)≥21​
For un≥a, if nis even then u≤−na​oru≥na​
sin(πx)≤−21​​orsin(πx)≥21​​
sin(πx)≤−21​​:−π−arcsin(−21​​)+2πn≤πx≤arcsin(−21​​)+2πn
sin(πx)≤−21​​
For sin(x)≤a, if −1<a<1 then −π−arcsin(a)+2πn≤x≤arcsin(a)+2πn−π−arcsin(−21​​)+2πn≤πx≤arcsin(−21​​)+2πn
If a≤u≤bthen a≤uandu≤b−π−arcsin(−21​​)+2πn≤πx≤arcsin(−21​​)+2πn
sin(πx)≥21​​:arcsin(21​​)+2πn≤πx≤π−arcsin(21​​)+2πn
sin(πx)≥21​​
For sin(x)≥a, if −1<a<1 then arcsin(a)+2πn≤x≤π−arcsin(a)+2πnarcsin(21​​)+2πn≤πx≤π−arcsin(21​​)+2πn
If a≤u≤bthen a≤uandu≤barcsin(21​​)+2πn≤πx≤π−arcsin(21​​)+2πn
Combine the intervals−π−arcsin(−21​​)+2πn≤πx≤arcsin(−21​​)+2πnorarcsin(21​​)+2πn≤πx≤π−arcsin(21​​)+2πn
Merge Overlapping Intervalsarcsin(21​​)+2πn≤πx≤π−arcsin(21​​)+2πn
arcsin(21​​)+2πn≤πx≤π−arcsin(21​​)+2πn
3sin2(πx)≤10​:True for all x∈R
3sin2(πx)≤10​
If f(x)≤g(x)then ln(f(x))≤ln(g(x))ln(3sin2(πx))≤ln(10​)
Simplify ln(3sin2(πx)):ln(3)sin2(πx)
ln(3sin2(πx))
Apply log rule loga​(xb)=b⋅loga​(x), assuming x≥0=ln(3)sin2(πx)
Simplify ln(10​):21​ln(10)
ln(10​)
Rewrite as=ln(1021​)
Apply log rule loga​(xb)=b⋅loga​(x), assuming x≥0=21​ln(10)
ln(3)sin2(πx)≤21​ln(10)
ln(3)sin2(πx)≤21​ln(10):True for all x
ln(3)sin2(πx)≤21​ln(10)
Divide both sides by ln(3)
ln(3)sin2(πx)≤21​ln(10)
Divide both sides by ln(3)ln(3)ln(3)sin2(πx)​≤ln(3)21​ln(10)​
Simplify
ln(3)ln(3)sin2(πx)​≤ln(3)21​ln(10)​
Simplify ln(3)ln(3)sin2(πx)​:sin2(πx)
ln(3)ln(3)sin2(πx)​
Cancel the common factor: ln(3)=sin2(πx)
Simplify ln(3)21​ln(10)​:2ln(3)ln(10)​
ln(3)21​ln(10)​
Multiply 21​ln(10):2ln(10)​
21​ln(10)
Multiply fractions: a⋅cb​=ca⋅b​=21⋅ln(10)​
Multiply: 1⋅ln(10)=ln(10)=2ln(10)​
=ln(3)2ln(10)​​
Apply the fraction rule: acb​​=c⋅ab​=2ln(3)ln(10)​
sin2(πx)≤2ln(3)ln(10)​
sin2(πx)≤2ln(3)ln(10)​
sin2(πx)≤2ln(3)ln(10)​
For un≤a, if nis even then −na​≤u≤na​
−2ln(3)ln(10)​​≤sin(πx)≤2ln(3)ln(10)​​
If a≤u≤bthen a≤uandu≤b−2ln(3)ln(10)​​≤sin(πx)andsin(πx)≤2ln(3)ln(10)​​
−2ln(3)ln(10)​​≤sin(πx):True for all x∈R
−2ln(3)ln(10)​​≤sin(πx)
Switch sidessin(πx)≥−2ln(3)ln(10)​​
Range of sin(πx):−1≤sin(πx)≤1
Function range definition
The range of the basic sinfunction is −1≤sin(πx)≤1−1≤sin(πx)≤1
sin(πx)≥−2ln(3)ln(10)​​and−1≤sin(πx)≤1:−1≤sin(πx)≤1
Let y=sin(πx)
Combine the intervalsy≥−2ln(3)ln(10)​​and−1≤y≤1
Merge Overlapping Intervals
y≥−2ln(3)ln(10)​​and−1≤y≤1
The intersection of two intervals is the set of numbers which are in both intervals
y≥−2ln(3)ln(10)​​and−1≤y≤1
−1≤y≤1
−1≤y≤1
Trueforallx
Trueforallx∈R
sin(πx)≤2ln(3)ln(10)​​:True for all x∈R
sin(πx)≤2ln(3)ln(10)​​
Range of sin(πx):−1≤sin(πx)≤1
Function range definition
The range of the basic sinfunction is −1≤sin(πx)≤1−1≤sin(πx)≤1
sin(πx)≤2ln(3)ln(10)​​and−1≤sin(πx)≤1:−1≤sin(πx)≤1
Let y=sin(πx)
Combine the intervalsy≤2ln(3)ln(10)​​and−1≤y≤1
Merge Overlapping Intervals
y≤2ln(3)ln(10)​​and−1≤y≤1
The intersection of two intervals is the set of numbers which are in both intervals
y≤2ln(3)ln(10)​​and−1≤y≤1
−1≤y≤1
−1≤y≤1
Trueforallx
Trueforallx∈R
Combine the intervalsTrueforallx∈RandTrueforallx∈R
Merge Overlapping Intervals
Trueforallx∈RandTrueforallx∈R
The intersection of two intervals is the set of numbers which are in both intervals
True for all x∈RandTrue for all x∈R
Trueforallx∈R
Trueforallx
Trueforallx
Combine the intervalsarcsin(21​​)+2πn≤πx≤π−arcsin(21​​)+2πnandTrueforallx∈R
Merge Overlapping Intervals
Falseforallx∈RandTrueforallx∈R
The intersection of two intervals is the set of numbers which are in both intervals
False for all x∈RandTrue for all x∈R
Falseforallx∈R
Falseforallx∈R
Combine the intervalsFalseforallx∈RorFalseforallx∈R
Merge Overlapping Intervals
Falseforallx∈RorFalseforallx∈R
The union of two intervals is the set of numbers which are in either interval
False for all x∈RorFalse for all x∈R
Falseforallx∈R
NoSolutionforx∈R
Falseforallx∈R

Popular Examples

sin(x)+cos(2x)>1sin(x)+cos(2x)>1cos(x)>= 4cos(x)≥4arctan(θ)<= (11pi)/9arctan(θ)≤911π​2sin^2(x)-5sin(x)-3>= 0,xe[0,2pi]2sin2(x)−5sin(x)−3≥0,xe[0,2π]4tan(x)>4,-pi/2 <θ< pi/24tan(x)>4,−2π​<θ<2π​
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024