Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

50sin(-(2pi)/3 x-pi/2)>=-15

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

50sin(−32π​x−2π​)≥−15

Solution

4π−9π−6arcsin(103​)​+3n≤x≤4π−3π+6arcsin(103​)​+3n
+2
Interval Notation
[4π−9π−6arcsin(103​)​+3n,4π−3π+6arcsin(103​)​+3n]
Decimal
−2.39548…+3n≤x≤−0.60451…+3n
Solution steps
50sin(−32π​x−2π​)≥−15
Divide both sides by 50
50sin(−32π​x−2π​)≥−15
Divide both sides by 505050sin(−32π​x−2π​)​≥50−15​
Simplify
5050sin(−32π​x−2π​)​≥50−15​
Simplify 5050sin(−32π​x−2π​)​:sin(−32π​x−2π​)
5050sin(−32π​x−2π​)​
Divide the numbers: 5050​=1=sin(−32π​x−2π​)
Simplify 50−15​:−103​
50−15​
Apply the fraction rule: b−a​=−ba​=−5015​
Cancel the common factor: 5=−103​
sin(−32π​x−2π​)≥−103​
sin(−32π​x−2π​)≥−103​
sin(−32π​x−2π​)≥−103​
Factor out −1 from −32π​x−2π​:−(32π​x+2π​)sin(−(32π​x+2π​))≥−103​
Use the following identity: sin(−x)=−sin(x)−sin(2π​+x32π​)≥−103​
Multiply both sides by −1
−sin(2π​+x32π​)≥−103​
Multiply both sides by -1 (reverse the inequality)(−sin(2π​+x32π​))(−1)≤(−103​)(−1)
Simplifysin(2π​+x32π​)≤103​
sin(2π​+x32π​)≤103​
For sin(x)≤a, if −1<a<1 then −π−arcsin(a)+2πn≤x≤arcsin(a)+2πn−π−arcsin(103​)+2πn≤(2π​+x32π​)≤arcsin(103​)+2πn
If a≤u≤bthen a≤uandu≤b−π−arcsin(103​)+2πn≤2π​+x32π​and2π​+x32π​≤arcsin(103​)+2πn
−π−arcsin(103​)+2πn≤2π​+x32π​:x≥4π−9π−6arcsin(103​)​+3n
−π−arcsin(103​)+2πn≤2π​+x32π​
Switch sides2π​+x32π​≥−π−arcsin(103​)+2πn
Move 2π​to the right side
2π​+x32π​≥−π−arcsin(103​)+2πn
Subtract 2π​ from both sides2π​+x32π​−2π​≥−π−arcsin(103​)+2πn−2π​
Simplifyx32π​≥−π−arcsin(103​)+2πn−2π​
x32π​≥−π−arcsin(103​)+2πn−2π​
Multiply both sides by 3
x32π​≥−π−arcsin(103​)+2πn−2π​
Multiply both sides by 33x32π​≥−3π−3arcsin(103​)+3⋅2πn−3⋅2π​
Simplify
3x32π​≥−3π−3arcsin(103​)+3⋅2πn−3⋅2π​
Simplify 3x32π​:2πx
3x32π​
Multiply fractions: a⋅cb​=ca⋅b​=32⋅3π​x
Cancel the common factor: 3=x⋅2π
Simplify −3π−3arcsin(103​)+3⋅2πn−3⋅2π​:−3π−3arcsin(103​)+6πn−23π​
−3π−3arcsin(103​)+3⋅2πn−3⋅2π​
Multiply the numbers: 3⋅2=6=−3π−3arcsin(103​)+6πn−3⋅2π​
Multiply 3⋅2π​:23π​
3⋅2π​
Multiply fractions: a⋅cb​=ca⋅b​=2π3​
=−3π−3arcsin(103​)+6πn−23π​
2πx≥−3π−3arcsin(103​)+6πn−23π​
2πx≥−3π−3arcsin(103​)+6πn−23π​
2πx≥−3π−3arcsin(103​)+6πn−23π​
Divide both sides by 2π
2πx≥−3π−3arcsin(103​)+6πn−23π​
Divide both sides by 2π2π2πx​≥−2π3π​−2π3arcsin(103​)​+2π6πn​−2π23π​​
Simplify
2π2πx​≥−2π3π​−2π3arcsin(103​)​+2π6πn​−2π23π​​
Simplify 2π2πx​:x
2π2πx​
Divide the numbers: 22​=1=ππx​
Cancel the common factor: π=x
Simplify −2π3π​−2π3arcsin(103​)​+2π6πn​−2π23π​​:3n−23​−43​−2π3arcsin(103​)​
−2π3π​−2π3arcsin(103​)​+2π6πn​−2π23π​​
Group like terms=−2π3π​+2π6πn​−2π23π​​−2π3arcsin(103​)​
2π3π​=23​
2π3π​
Cancel the common factor: π=23​
2π6πn​=3n
2π6πn​
Cancel 2π6πn​:3n
2π6πn​
Divide the numbers: 26​=3=π3πn​
Cancel the common factor: π=3n
=3n
2π23π​​=43​
2π23π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅2π3π​
Multiply the numbers: 2⋅2=4=4π3π​
Cancel the common factor: π=43​
=−23​+3n−43​−2π3arcsin(103​)​
Group like terms=3n−23​−43​−2π3arcsin(103​)​
x≥3n−23​−43​−2π3arcsin(103​)​
x≥3n−23​−43​−2π3arcsin(103​)​
Simplify −23​−43​−2π3arcsin(103​)​:4π−9π−6arcsin(103​)​
−23​−43​−2π3arcsin(103​)​
Least Common Multiplier of 2,4,2π:4π
2,4,2π
Lowest Common Multiplier (LCM)
Least Common Multiplier of 2,4,2:4
2,4,2
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Compute a number comprised of factors that appear in at least one of the following:
2,4,2
=2⋅2
Multiply the numbers: 2⋅2=4=4
Compute an expression comprised of factors that appear in at least one of the factored expressions=4π
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 4π
For 23​:multiply the denominator and numerator by 2π23​=2⋅2π3⋅2π​=4π6π​
For 43​:multiply the denominator and numerator by π43​=4π3π​
For 2π3arcsin(103​)​:multiply the denominator and numerator by 22π3arcsin(103​)​=2π23arcsin(103​)⋅2​=4π6arcsin(103​)​
=−4π6π​−4π3π​−4π6arcsin(103​)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=4π−6π−3π−6arcsin(103​)​
Add similar elements: −6π−3π=−9π=4π−9π−6arcsin(103​)​
x≥4π−9π−6arcsin(103​)​+3n
x≥4π−9π−6arcsin(103​)​+3n
2π​+x32π​≤arcsin(103​)+2πn:x≤4π−3π+6arcsin(103​)​+3n
2π​+x32π​≤arcsin(103​)+2πn
Move 2π​to the right side
2π​+x32π​≤arcsin(103​)+2πn
Subtract 2π​ from both sides2π​+x32π​−2π​≤arcsin(103​)+2πn−2π​
Simplifyx32π​≤arcsin(103​)+2πn−2π​
x32π​≤arcsin(103​)+2πn−2π​
Multiply both sides by 3
x32π​≤arcsin(103​)+2πn−2π​
Multiply both sides by 33x32π​≤3arcsin(103​)+3⋅2πn−3⋅2π​
Simplify
3x32π​≤3arcsin(103​)+3⋅2πn−3⋅2π​
Simplify 3x32π​:2πx
3x32π​
Multiply fractions: a⋅cb​=ca⋅b​=32⋅3π​x
Cancel the common factor: 3=x⋅2π
Simplify 3arcsin(103​)+3⋅2πn−3⋅2π​:3arcsin(103​)+6πn−23π​
3arcsin(103​)+3⋅2πn−3⋅2π​
Multiply the numbers: 3⋅2=6=3arcsin(103​)+6πn−3⋅2π​
Multiply 3⋅2π​:23π​
3⋅2π​
Multiply fractions: a⋅cb​=ca⋅b​=2π3​
=3arcsin(103​)+6πn−23π​
2πx≤3arcsin(103​)+6πn−23π​
2πx≤3arcsin(103​)+6πn−23π​
2πx≤3arcsin(103​)+6πn−23π​
Divide both sides by 2π
2πx≤3arcsin(103​)+6πn−23π​
Divide both sides by 2π2π2πx​≤2π3arcsin(103​)​+2π6πn​−2π23π​​
Simplify
2π2πx​≤2π3arcsin(103​)​+2π6πn​−2π23π​​
Simplify 2π2πx​:x
2π2πx​
Divide the numbers: 22​=1=ππx​
Cancel the common factor: π=x
Simplify 2π3arcsin(103​)​+2π6πn​−2π23π​​:3n−43​+2π3arcsin(103​)​
2π3arcsin(103​)​+2π6πn​−2π23π​​
Group like terms=2π6πn​−2π23π​​+2π3arcsin(103​)​
2π6πn​=3n
2π6πn​
Cancel 2π6πn​:3n
2π6πn​
Divide the numbers: 26​=3=π3πn​
Cancel the common factor: π=3n
=3n
2π23π​​=43​
2π23π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅2π3π​
Multiply the numbers: 2⋅2=4=4π3π​
Cancel the common factor: π=43​
=3n−43​+2π3arcsin(103​)​
x≤3n−43​+2π3arcsin(103​)​
x≤3n−43​+2π3arcsin(103​)​
Simplify −43​+2π3arcsin(103​)​:4π−3π+6arcsin(103​)​
−43​+2π3arcsin(103​)​
Least Common Multiplier of 4,2π:4π
4,2π
Lowest Common Multiplier (LCM)
Least Common Multiplier of 4,2:4
4,2
Least Common Multiplier (LCM)
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Multiply each factor the greatest number of times it occurs in either 4 or 2=2⋅2
Multiply the numbers: 2⋅2=4=4
Compute an expression comprised of factors that appear either in 4 or 2π=4π
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 4π
For 43​:multiply the denominator and numerator by π43​=4π3π​
For 2π3arcsin(103​)​:multiply the denominator and numerator by 22π3arcsin(103​)​=2π23arcsin(103​)⋅2​=4π6arcsin(103​)​
=−4π3π​+4π6arcsin(103​)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=4π−3π+6arcsin(103​)​
x≤4π−3π+6arcsin(103​)​+3n
x≤4π−3π+6arcsin(103​)​+3n
Combine the intervalsx≥4π−9π−6arcsin(103​)​+3nandx≤4π−3π+6arcsin(103​)​+3n
Merge Overlapping Intervals4π−9π−6arcsin(103​)​+3n≤x≤4π−3π+6arcsin(103​)​+3n

Popular Examples

cos(pi/6 x)<0cos(6π​x)<0tan(x)<=-2sqrt(3)tan(x)≤−23​tan(x)<= 1,0<= x<= 2pitan(x)≤1,0≤x≤2π(sin(x))< 1/2(sin(x))<21​(2cos(x)-sqrt(2))/(sin(2x))<= 0sin(2x)2cos(x)−2​​≤0
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024