Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

-pi/(12)sin^2(pi/(12)t)<0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

−12π​sin2(12π​t)<0

Solution

24n<t<12+24nor−12+24n<t<24n
+1
Interval Notation
(24n,12+24n)∪(−12+24n,24n)
Solution steps
−12π​sin2(12π​t)<0
Multiply both sides by −1
−12π​sin2(12π​t)<0
Multiply both sides by -1 (reverse the inequality)(−12π​sin2(12π​t))(−1)>0⋅(−1)
Simplify12π​sin2(12π​t)>0
12π​sin2(12π​t)>0
Multiply both sides by 12
12π​sin2(12π​t)>0
Multiply both sides by 1212⋅12π​sin2(12π​t)>0⋅12
Simplifyπsin2(12π​t)>0
πsin2(12π​t)>0
Divide both sides by π
πsin2(12π​t)>0
Divide both sides by πππsin2(12π​t)​>π0​
Simplifysin2(12π​t)>0
sin2(12π​t)>0
For un>0, if nis even then u<0oru>0
sin(12π​t)<0orsin(12π​t)>0
sin(12π​t)<0:−12+24n<t<24n
sin(12π​t)<0
For sin(x)<a, if −1<a≤1 then −π−arcsin(a)+2πn<x<arcsin(a)+2πn−π−arcsin(0)+2πn<12π​t<arcsin(0)+2πn
If a<u<bthen a<uandu<b−π−arcsin(0)+2πn<12π​tand12π​t<arcsin(0)+2πn
−π−arcsin(0)+2πn<12π​t:t>24n−12
−π−arcsin(0)+2πn<12π​t
Switch sides12π​t>−π−arcsin(0)+2πn
Simplify −π−arcsin(0)+2πn:2πn−π
−π−arcsin(0)+2πn
Use the following trivial identity:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=−π−0+2πn
−π−0+2πn=−π+2πn=2πn−π
12π​t>2πn−π
Multiply both sides by 12
12π​t>2πn−π
Multiply both sides by 1212⋅12π​t>12⋅2πn−12π
Simplifyπt>24πn−12π
πt>24πn−12π
Divide both sides by π
πt>24πn−12π
Divide both sides by πππt​>π24πn​−π12π​
Simplify
ππt​>π24πn​−π12π​
Simplify ππt​:t
ππt​
Cancel the common factor: π=t
Simplify π24πn​−π12π​:24n−12
π24πn​−π12π​
Cancel π24πn​:24n
π24πn​
Cancel the common factor: π=24n
=24n−π12π​
Cancel π12π​:12
π12π​
Cancel the common factor: π=12
=24n−12
t>24n−12
t>24n−12
t>24n−12
12π​t<arcsin(0)+2πn:t<24n
12π​t<arcsin(0)+2πn
Simplify arcsin(0)+2πn:2πn
arcsin(0)+2πn
Use the following trivial identity:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=0+2πn
0+2πn=2πn=2πn
12π​t<2πn
Multiply both sides by 12
12π​t<2πn
Multiply both sides by 1212⋅12π​t<12⋅2πn
Simplifyπt<24πn
πt<24πn
Divide both sides by π
πt<24πn
Divide both sides by πππt​<π24πn​
Simplifyt<24n
t<24n
Combine the intervalst>24n−12andt<24n
Merge Overlapping Intervals−12+24n<t<24n
sin(12π​t)>0:24n<t<12+24n
sin(12π​t)>0
For sin(x)>a, if −1≤a<1 then arcsin(a)+2πn<x<π−arcsin(a)+2πnarcsin(0)+2πn<12π​t<π−arcsin(0)+2πn
If a<u<bthen a<uandu<barcsin(0)+2πn<12π​tand12π​t<π−arcsin(0)+2πn
arcsin(0)+2πn<12π​t:t>24n
arcsin(0)+2πn<12π​t
Switch sides12π​t>arcsin(0)+2πn
Simplify arcsin(0)+2πn:2πn
arcsin(0)+2πn
Use the following trivial identity:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=0+2πn
0+2πn=2πn=2πn
12π​t>2πn
Multiply both sides by 12
12π​t>2πn
Multiply both sides by 1212⋅12π​t>12⋅2πn
Simplifyπt>24πn
πt>24πn
Divide both sides by π
πt>24πn
Divide both sides by πππt​>π24πn​
Simplifyt>24n
t>24n
12π​t<π−arcsin(0)+2πn:t<12+24n
12π​t<π−arcsin(0)+2πn
Simplify π−arcsin(0)+2πn:π+2πn
π−arcsin(0)+2πn
Use the following trivial identity:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=π−0+2πn
π−0+2πn=π+2πn=π+2πn
12π​t<π+2πn
Multiply both sides by 12
12π​t<π+2πn
Multiply both sides by 1212⋅12π​t<12π+12⋅2πn
Simplifyπt<12π+24πn
πt<12π+24πn
Divide both sides by π
πt<12π+24πn
Divide both sides by πππt​<π12π​+π24πn​
Simplify
ππt​<π12π​+π24πn​
Simplify ππt​:t
ππt​
Cancel the common factor: π=t
Simplify π12π​+π24πn​:12+24n
π12π​+π24πn​
Cancel π12π​:12
π12π​
Cancel the common factor: π=12
=12+π24πn​
Cancel π24πn​:24n
π24πn​
Cancel the common factor: π=24n
=12+24n
t<12+24n
t<12+24n
t<12+24n
Combine the intervalst>24nandt<12+24n
Merge Overlapping Intervals24n<t<12+24n
Combine the intervals−12+24n<t<24nor24n<t<12+24n
Merge Overlapping Intervals24n<t<12+24nor−12+24n<t<24n

Popular Examples

12cos(2x)>012cos(2x)>02cos(x)-1>= 02cos(x)−1≥0solvefor t,(rcos(t))/r r>0solvefort,rrcos(t)​r>0cos(4/3 x+pi/6)>= 1cos(34​x+6π​)≥1sqrt(2)-2cos(a)>= 02​−2cos(a)≥0
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024