Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sqrt(3)cos(x)-sin(x)>= 1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3​cos(x)−sin(x)≥1

Solution

−2π​+2πn≤x≤6π​+2πn
+2
Interval Notation
[−2π​+2πn,6π​+2πn]
Decimal
−1.57079…+2πn≤x≤0.52359…+2πn
Solution steps
3​cos(x)−sin(x)≥1
Rewrite using trig identities
Divide both sides by 223​cos(x)−sin(x)​≥21​
Expand 23​cos(x)−sin(x)​:23​​cos(x)−21​sin(x)
23​cos(x)−sin(x)​
Apply the fraction rule: ca±b​=ca​±cb​23​cos(x)−sin(x)​=23​cos(x)​−2sin(x)​=23​cos(x)​−2sin(x)​
=23​​cos(x)−21​sin(x)
23​​cos(x)−21​sin(x)≥21​
23​​=sin(3π​)sin(3π​)cos(x)−21​sin(x)≥21​
21​=cos(3π​)sin(3π​)cos(x)−cos(3π​)sin(x)≥21​
Use the following identity: −cos(s)sin(t)+cos(t)sin(s)=sin(s−t)sin(3π​−x)≥21​
Factor out −1 from 3π​−x:−(−3π​+x)sin(−(−3π​+x))≥21​
Use the following identity: sin(−x)=−sin(x)−sin(−3π​+x)≥21​
Multiply both sides by −1
−sin(−3π​+x)≥21​
Multiply both sides by -1 (reverse the inequality)(−sin(−3π​+x))(−1)≤21⋅(−1)​
Simplifysin(−3π​+x)≤−21​
sin(−3π​+x)≤−21​
sin(−3π​+x)≤−21​
For sin(x)≤a, if −1<a<1 then −π−arcsin(a)+2πn≤x≤arcsin(a)+2πn−π−arcsin(−21​)+2πn≤(−3π​+x)≤arcsin(−21​)+2πn
If a≤u≤bthen a≤uandu≤b−π−arcsin(−21​)+2πn≤−3π​+xand−3π​+x≤arcsin(−21​)+2πn
−π−arcsin(−21​)+2πn≤−3π​+x:x≥−2π​+2πn
−π−arcsin(−21​)+2πn≤−3π​+x
Switch sides−3π​+x≥−π−arcsin(−21​)+2πn
Simplify −π−arcsin(−21​)+2πn:−π+6π​+2πn
−π−arcsin(−21​)+2πn
arcsin(−21​)=−6π​
arcsin(−21​)
Use the following property: arcsin(−x)=−arcsin(x)arcsin(−21​)=−arcsin(21​)=−arcsin(21​)
Use the following trivial identity:arcsin(21​)=6π​
arcsin(21​)
x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​
=6π​
=−6π​
=−π−(−6π​)+2πn
Apply rule −(−a)=a=−π+6π​+2πn
−3π​+x≥−π+6π​+2πn
Move 3π​to the right side
−3π​+x≥−π+6π​+2πn
Add 3π​ to both sides−3π​+x+3π​≥−π+6π​+2πn+3π​
Simplify
−3π​+x+3π​≥−π+6π​+2πn+3π​
Simplify −3π​+x+3π​:x
−3π​+x+3π​
Add similar elements: −3π​+3π​≥0
=x
Simplify −π+6π​+2πn+3π​:−π+2πn+2π​
−π+6π​+2πn+3π​
Group like terms=−π+2πn+6π​+3π​
Least Common Multiplier of 6,3:6
6,3
Least Common Multiplier (LCM)
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Multiply each factor the greatest number of times it occurs in either 6 or 3=2⋅3
Multiply the numbers: 2⋅3=6=6
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 6
For 3π​:multiply the denominator and numerator by 23π​=3⋅2π2​=6π2​
=6π​+6π2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=6π+π2​
Add similar elements: π+2π=3π=63π​
Cancel the common factor: 3=−π+2πn+2π​
x≥−π+2πn+2π​
x≥−π+2πn+2π​
x≥−π+2πn+2π​
Simplify −π+2π​:−2π​
−π+2π​
Convert element to fraction: π=2π2​=−2π2​+2π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2−π2+π​
Add similar elements: −2π+π=−π=2−π​
Apply the fraction rule: b−a​=−ba​=−2π​
x≥−2π​+2πn
−3π​+x≤arcsin(−21​)+2πn:x≤2πn+6π​
−3π​+x≤arcsin(−21​)+2πn
Simplify arcsin(−21​)+2πn:−6π​+2πn
arcsin(−21​)+2πn
arcsin(−21​)=−6π​
arcsin(−21​)
Use the following property: arcsin(−x)=−arcsin(x)arcsin(−21​)=−arcsin(21​)=−arcsin(21​)
Use the following trivial identity:arcsin(21​)=6π​
arcsin(21​)
x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​
=6π​
=−6π​
=−6π​+2πn
−3π​+x≤−6π​+2πn
Move 3π​to the right side
−3π​+x≤−6π​+2πn
Add 3π​ to both sides−3π​+x+3π​≤−6π​+2πn+3π​
Simplify
−3π​+x+3π​≤−6π​+2πn+3π​
Simplify −3π​+x+3π​:x
−3π​+x+3π​
Add similar elements: −3π​+3π​≤0
=x
Simplify −6π​+2πn+3π​:2πn+6π​
−6π​+2πn+3π​
Group like terms=2πn−6π​+3π​
Least Common Multiplier of 6,3:6
6,3
Least Common Multiplier (LCM)
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Multiply each factor the greatest number of times it occurs in either 6 or 3=2⋅3
Multiply the numbers: 2⋅3=6=6
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 6
For 3π​:multiply the denominator and numerator by 23π​=3⋅2π2​=6π2​
=−6π​+6π2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=6−π+π2​
Add similar elements: −π+2π=π=2πn+6π​
x≤2πn+6π​
x≤2πn+6π​
x≤2πn+6π​
Combine the intervalsx≥−2π​+2πnandx≤2πn+6π​
Merge Overlapping Intervals−2π​+2πn≤x≤6π​+2πn

Popular Examples

cos^2(x)-5cos(x)*2.25>= 0cos2(x)−5cos(x)⋅2.25≥0-pi/(12)sin^2(pi/(12)t)>0−12π​sin2(12π​t)>00<-pisin(pix)0<−πsin(πx)(cos(x)-1)(cos(x)+1/2)>= 0(cos(x)−1)(cos(x)+21​)≥0tan(x)< pi/2tan(x)<2π​
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024