Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

4sin^2(x)+3tan(x)>sec^2(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

4sin2(x)+3tan(x)>sec2(x)

Solution

12π​+πn<x<125π​+πn
+2
Interval Notation
(12π​+πn,125π​+πn)
Decimal
0.26179…+πn<x<1.30899…+πn
Solution steps
4sin2(x)+3tan(x)>sec2(x)
Move sec2(x)to the left side
4sin2(x)+3tan(x)>sec2(x)
Subtract sec2(x) from both sides4sin2(x)+3tan(x)−sec2(x)>sec2(x)−sec2(x)
4sin2(x)+3tan(x)−sec2(x)>0
4sin2(x)+3tan(x)−sec2(x)>0
Use the following identity: cos2(x)+sin2(x)=1Therefore sin2(x)=1−cos2(x)4(1−cos2(x))+3tan(x)−sec2(x)>0
Periodicity of 4(1−cos2(x))+3tan(x)−sec2(x):π
The compound periodicity of the sum of periodic functions is the least common multiplier of the periods4(1−cos2(x)),3tan(x),sec2(x)
Periodicity of 4(1−cos2(x)):π
Periodicity of cosn(x)=2Periodicityofcos(x)​,if n is even
Periodicity of cos(x):2π
Periodicity of cos(x)is 2π=2π
22π​
Simplifyπ
Periodicity of 3tan(x):π
Periodicity of a⋅tan(bx+c)+d=∣b∣periodicityoftan(x)​Periodicity of tan(x)is π=∣1∣π​
Simplify=π
Periodicity of sec2(x):π
Periodicity of secn(x)=2Periodicityofsec(x)​,if n is even
Periodicity of sec(x):2π
Periodicity of sec(x)is 2π=2π
22π​
Simplifyπ
Combine periods: π,π,π
=π
Express with sin, cos
4(1−cos2(x))+3tan(x)−sec2(x)>0
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​4(1−cos2(x))+3⋅cos(x)sin(x)​−sec2(x)>0
Use the basic trigonometric identity: sec(x)=cos(x)1​4(1−cos2(x))+3⋅cos(x)sin(x)​−(cos(x)1​)2>0
4(1−cos2(x))+3⋅cos(x)sin(x)​−(cos(x)1​)2>0
Simplify 4(1−cos2(x))+3⋅cos(x)sin(x)​−(cos(x)1​)2:cos2(x)4cos2(x)(1−cos2(x))+3sin(x)cos(x)−1​
4(1−cos2(x))+3⋅cos(x)sin(x)​−(cos(x)1​)2
3⋅cos(x)sin(x)​=cos(x)3sin(x)​
3⋅cos(x)sin(x)​
Multiply fractions: a⋅cb​=ca⋅b​=cos(x)sin(x)⋅3​
(cos(x)1​)2=cos2(x)1​
(cos(x)1​)2
Apply exponent rule: (ba​)c=bcac​=cos2(x)12​
Apply rule 1a=112=1=cos2(x)1​
=4(−cos2(x)+1)+cos(x)3sin(x)​−cos2(x)1​
Convert element to fraction: 4(−cos2(x)+1)=14(−cos2(x)+1)​=14(1−cos2(x))​+cos(x)sin(x)⋅3​−cos2(x)1​
Least Common Multiplier of 1,cos(x),cos2(x):cos2(x)
1,cos(x),cos2(x)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear in at least one of the factored expressions=cos2(x)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM cos2(x)
For 14(1−cos2(x))​:multiply the denominator and numerator by cos2(x)14(1−cos2(x))​=1⋅cos2(x)4(1−cos2(x))cos2(x)​=cos2(x)4(1−cos2(x))cos2(x)​
For cos(x)sin(x)⋅3​:multiply the denominator and numerator by cos(x)cos(x)sin(x)⋅3​=cos(x)cos(x)sin(x)⋅3cos(x)​=cos2(x)sin(x)⋅3cos(x)​
=cos2(x)4(1−cos2(x))cos2(x)​+cos2(x)sin(x)⋅3cos(x)​−cos2(x)1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos2(x)4(1−cos2(x))cos2(x)+sin(x)⋅3cos(x)−1​
cos2(x)4cos2(x)(1−cos2(x))+3sin(x)cos(x)−1​>0
Find the zeroes and undifined points of cos2(x)4cos2(x)(1−cos2(x))+3sin(x)cos(x)−1​for 0≤x<π
To find the zeroes, set the inequality to zerocos2(x)4cos2(x)(1−cos2(x))+3sin(x)cos(x)−1​=0
cos2(x)4cos2(x)(1−cos2(x))+3sin(x)cos(x)−1​=0,0≤x<π:x=12π​,x=125π​
cos2(x)4cos2(x)(1−cos2(x))+3sin(x)cos(x)−1​=0,0≤x<π
g(x)f(x)​=0⇒f(x)=04cos2(x)(1−cos2(x))+3sin(x)cos(x)−1=0
Rewrite using trig identities
−1+(1−cos2(x))⋅4cos2(x)+3cos(x)sin(x)
Use the Pythagorean identity: 1=cos2(x)+sin2(x)1−cos2(x)=sin2(x)=−1+3cos(x)sin(x)+4cos2(x)sin2(x)
−1+3cos(x)sin(x)+4cos2(x)sin2(x)=0
Factor −1+3cos(x)sin(x)+4cos2(x)sin2(x):(4sin(x)cos(x)−1)(sin(x)cos(x)+1)
−1+3cos(x)sin(x)+4cos2(x)sin2(x)
Break the expression into groups
4sin2(x)cos2(x)+3sin(x)cos(x)−1
Definition
Factors of 4:1,2,4
4
Divisors (Factors)
Find the Prime factors of 4:2,2
4
4divides by 24=2⋅2=2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2
Add the prime factors: 2
Add 1 and the number 4 itself1,4
The factors of 41,2,4
Negative factors of 4:−1,−2,−4
Multiply the factors by −1 to get the negative factors−1,−2,−4
For every two factors such that u∗v=−4,check if u+v=3
Check u=1,v=−4:u∗v=−4,u+v=−3⇒FalseCheck u=2,v=−2:u∗v=−4,u+v=0⇒False
u=4,v=−1
Group into (ax2y2+uxy)+(vxy+c)(4sin2(x)cos2(x)−sin(x)cos(x))+(4sin(x)cos(x)−1)
=(4sin2(x)cos2(x)−sin(x)cos(x))+(4sin(x)cos(x)−1)
Factor out sin(x)cos(x)from 4sin2(x)cos2(x)−sin(x)cos(x):sin(x)cos(x)(4sin(x)cos(x)−1)
4sin2(x)cos2(x)−sin(x)cos(x)
Apply exponent rule: ab+c=abacsin2(x)cos2(x)=sin(x)sin(x)cos(x)cos(x)=4sin(x)sin(x)cos(x)cos(x)−sin(x)cos(x)
Factor out common term sin(x)cos(x)=sin(x)cos(x)(4sin(x)cos(x)−1)
=sin(x)cos(x)(4sin(x)cos(x)−1)+(4sin(x)cos(x)−1)
Factor out common term 4sin(x)cos(x)−1=(4sin(x)cos(x)−1)(sin(x)cos(x)+1)
(4sin(x)cos(x)−1)(sin(x)cos(x)+1)=0
Solving each part separately4sin(x)cos(x)−1=0orsin(x)cos(x)+1=0
4sin(x)cos(x)−1=0,0≤x<π:x=12π​,x=125π​
4sin(x)cos(x)−1=0,0≤x<π
Rewrite using trig identities
4sin(x)cos(x)−1
Use the Double Angle identity: 2sin(x)cos(x)=sin(2x)sin(x)cos(x)=2sin(2x)​=−1+4⋅2sin(2x)​
−1+4⋅2sin(2x)​=0
4⋅2sin(2x)​=2sin(2x)
4⋅2sin(2x)​
Multiply fractions: a⋅cb​=ca⋅b​=2sin(2x)⋅4​
Divide the numbers: 24​=2=2sin(2x)
−1+2sin(2x)=0
Move 1to the right side
−1+2sin(2x)=0
Add 1 to both sides−1+2sin(2x)+1=0+1
Simplify2sin(2x)=1
2sin(2x)=1
Divide both sides by 2
2sin(2x)=1
Divide both sides by 222sin(2x)​=21​
Simplifysin(2x)=21​
sin(2x)=21​
General solutions for sin(2x)=21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
2x=6π​+2πn,2x=65π​+2πn
2x=6π​+2πn,2x=65π​+2πn
Solve 2x=6π​+2πn:x=12π​+πn
2x=6π​+2πn
Divide both sides by 2
2x=6π​+2πn
Divide both sides by 222x​=26π​​+22πn​
Simplify
22x​=26π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 26π​​+22πn​:12π​+πn
26π​​+22πn​
26π​​=12π​
26π​​
Apply the fraction rule: acb​​=c⋅ab​=6⋅2π​
Multiply the numbers: 6⋅2=12=12π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=12π​+πn
x=12π​+πn
x=12π​+πn
x=12π​+πn
Solve 2x=65π​+2πn:x=125π​+πn
2x=65π​+2πn
Divide both sides by 2
2x=65π​+2πn
Divide both sides by 222x​=265π​​+22πn​
Simplify
22x​=265π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 265π​​+22πn​:125π​+πn
265π​​+22πn​
265π​​=125π​
265π​​
Apply the fraction rule: acb​​=c⋅ab​=6⋅25π​
Multiply the numbers: 6⋅2=12=125π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=125π​+πn
x=125π​+πn
x=125π​+πn
x=125π​+πn
x=12π​+πn,x=125π​+πn
Solutions for the range 0≤x<πx=12π​,x=125π​
sin(x)cos(x)+1=0,0≤x<π:No Solution
sin(x)cos(x)+1=0,0≤x<π
Rewrite using trig identities
sin(x)cos(x)+1
Use the Double Angle identity: 2sin(x)cos(x)=sin(2x)sin(x)cos(x)=2sin(2x)​=1+2sin(2x)​
1+2sin(2x)​=0
Move 1to the right side
1+2sin(2x)​=0
Subtract 1 from both sides1+2sin(2x)​−1=0−1
Simplify2sin(2x)​=−1
2sin(2x)​=−1
Multiply both sides by 2
2sin(2x)​=−1
Multiply both sides by 222sin(2x)​=2(−1)
Simplifysin(2x)=−2
sin(2x)=−2
−1≤sin(x)≤1NoSolution
Combine all the solutionsx=12π​,x=125π​
Find the undefined points:x=2π​
Find the zeros of the denominatorcos2(x)=0
Apply rule xn=0⇒x=0
cos(x)=0
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
Solutions for the range 0≤x<πx=2π​
12π​,125π​,2π​
Identify the intervals0<x<12π​,12π​<x<125π​,125π​<x<2π​,2π​<x<π
Summarize in a table:4cos2(x)(1−cos2(x))+3sin(x)cos(x)−1cos2(x)cos2(x)4cos2(x)(1−cos2(x))+3sin(x)cos(x)−1​​x=0−+−​0<x<12π​−+−​x=12π​0+0​12π​<x<125π​+++​x=125π​0+0​125π​<x<2π​−+−​x=2π​−0Undefined​2π​<x<π−+−​x=π−+−​​
Identify the intervals that satisfy the required condition: >012π​<x<125π​
Apply the periodicity of 4(1−cos2(x))+3tan(x)−sec2(x)12π​+πn<x<125π​+πn

Popular Examples

sin(4x+17)>0sin(4x+17∘)>03sin((pix)/(12)-pi/2)<=-23sin(12πx​−2π​)≤−2-sin(x)(2+sin(x))-cos^2(x)>0−sin(x)(2+sin(x))−cos2(x)>01/(sqrt(3))<tan(x)3​1​<tan(x)6cos(θ)>= 06cos(θ)≥0
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024