Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

0<2-sec(x^2)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

0<2−sec(x2)

Solution

2πn≤x<3π​​+2πnor2π​​+2πn<x<23π​​+2πnor35π​​+2πn<x<37π​​+2πnor25π​​+2πn<x<27π​​+2πnor311π​​+2πn<x<313π​​+2πnor2​3π​​+2πn<x<211π​​+2πnor317π​​+2πn<x<319π​​+2πnor213π​​+2πn<x<215π​​+2πnor323π​​+2πn<x<3​5π​​+2πnor217π​​+2πn<x<219π​​+2πnor329π​​+2πn<x≤2π+2πn
+2
Interval Notation
[2πn,3π​​+2πn)∪(2π​​+2πn,23π​​+2πn)∪(35π​​+2πn,37π​​+2πn)∪(25π​​+2πn,27π​​+2πn)∪(311π​​+2πn,313π​​+2πn)∪(2​3π​​+2πn,211π​​+2πn)∪(317π​​+2πn,319π​​+2πn)∪(213π​​+2πn,215π​​+2πn)∪(323π​​+2πn,3​5π​​+2πn)∪(217π​​+2πn,219π​​+2πn)∪(329π​​+2πn,2π+2πn]
Decimal
2πn≤x<1.02332…+2πnor1.25331…+2πn<x<2.17080…+2πnor2.28822…+2πn<x<2.70746…+2πnor2.80249…+2πn<x<3.31595…+2πnor3.39399…+2πn<x<3.68965…+2πnor3.75994…+2πn<x<4.15677…+2πnor4.21928…+2πn<x<4.46057…+2πnor4.51888…+2πn<x<4.85406…+2πnor4.90770…+2πn<x<5.11663…+2πnor5.16754…+2πn<x<5.46306…+2πnor5.51078…+2πn<x≤6.28318…+2πn
Solution steps
0<2−sec(x2)
Switch sides2−sec(x2)>0
Periodicity of 2−sec(x2):Not periodic
The function 2−sec(x2)is not periodic=Notperiodic
Express with sin, cos
2−sec(x2)>0
Use the basic trigonometric identity: sec(x)=cos(x)1​2−cos(x2)1​>0
2−cos(x2)1​>0
Simplify 2−cos(x2)1​:cos(x2)2cos(x2)−1​
2−cos(x2)1​
Convert element to fraction: 2=cos(x2)2cos(x2)​=cos(x2)2cos(x2)​−cos(x2)1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x2)2cos(x2)−1​
cos(x2)2cos(x2)−1​>0
Find the zeroes and undifined points of cos(x2)2cos(x2)−1​for 0≤x<2π
To find the zeroes, set the inequality to zerocos(x2)2cos(x2)−1​=0
cos(x2)2cos(x2)−1​=0,0≤x<2π:x=3π​​,x=35π​​,x=37π​​,x=311π​​,x=313π​​,x=317π​​,x=319π​​,x=323π​​,x=3​5π​​,x=329π​​
cos(x2)2cos(x2)−1​=0,0≤x<2π
Solve by substitution
cos(x2)2cos(x2)−1​=0
Let: cos(x2)=uu2u−1​=0
u2u−1​=0:u=21​
u2u−1​=0
g(x)f(x)​=0⇒f(x)=02u−1=0
Move 1to the right side
2u−1=0
Add 1 to both sides2u−1+1=0+1
Simplify2u=1
2u=1
Divide both sides by 2
2u=1
Divide both sides by 222u​=21​
Simplifyu=21​
u=21​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of u2u−1​ and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=21​
Substitute back u=cos(x2)cos(x2)=21​
cos(x2)=21​
cos(x2)=21​,0≤x<2π:x=3π​​,x=35π​​,x=37π​​,x=311π​​,x=313π​​,x=317π​​,x=319π​​,x=323π​​,x=3​5π​​,x=329π​​
cos(x2)=21​,0≤x<2π
General solutions for cos(x2)=21​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x2=3π​+2πn,x2=35π​+2πn
x2=3π​+2πn,x2=35π​+2πn
Solve x2=3π​+2πn:x=3π+6πn​​,x=−3π+6πn​​
x2=3π​+2πn
For x2=f(a) the solutions are x=f(a)​,−f(a)​
x=3π​+2πn​,x=−3π​+2πn​
Simplify 3π​+2πn​:3π+6πn​​
3π​+2πn​
Join 3π​+2πn:3π+6πn​
3π​+2πn
Convert element to fraction: 2πn=32πn3​=3π​+32πn⋅3​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=3π+2πn⋅3​
Multiply the numbers: 2⋅3=6=3π+6πn​
=3π+6πn​​
Simplify −3π​+2πn​:−3π+6πn​​
−3π​+2πn​
Join 3π​+2πn:3π+6πn​
3π​+2πn
Convert element to fraction: 2πn=32πn3​=3π​+32πn⋅3​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=3π+2πn⋅3​
Multiply the numbers: 2⋅3=6=3π+6πn​
=−3π+6πn​​
x=3π+6πn​​,x=−3π+6πn​​
Solve x2=35π​+2πn:x=35π+6πn​​,x=−35π+6πn​​
x2=35π​+2πn
For x2=f(a) the solutions are x=f(a)​,−f(a)​
x=35π​+2πn​,x=−35π​+2πn​
Simplify 35π​+2πn​:35π+6πn​​
35π​+2πn​
Join 35π​+2πn:35π+6πn​
35π​+2πn
Convert element to fraction: 2πn=32πn3​=35π​+32πn⋅3​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=35π+2πn⋅3​
Multiply the numbers: 2⋅3=6=35π+6πn​
=35π+6πn​​
Simplify −35π​+2πn​:−35π+6πn​​
−35π​+2πn​
Join 35π​+2πn:35π+6πn​
35π​+2πn
Convert element to fraction: 2πn=32πn3​=35π​+32πn⋅3​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=35π+2πn⋅3​
Multiply the numbers: 2⋅3=6=35π+6πn​
=−35π+6πn​​
x=35π+6πn​​,x=−35π+6πn​​
x=3π+6πn​​,x=−3π+6πn​​,x=35π+6πn​​,x=−35π+6πn​​
Solutions for the range 0≤x<2πx=3π​​,x=35π​​,x=37π​​,x=311π​​,x=313π​​,x=317π​​,x=319π​​,x=323π​​,x=3​5π​​,x=329π​​
Combine all the solutionsx=3π​​,x=35π​​,x=37π​​,x=311π​​,x=313π​​,x=317π​​,x=319π​​,x=323π​​,x=3​5π​​,x=329π​​
Find the undefined points:x=2π​​,x=23π​​,x=25π​​,x=27π​​,x=2​3π​​,x=211π​​,x=213π​​,x=215π​​,x=217π​​,x=219π​​
Find the zeros of the denominatorcos(x2)=0
General solutions for cos(x2)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x2=2π​+2πn,x2=23π​+2πn
x2=2π​+2πn,x2=23π​+2πn
Solve x2=2π​+2πn:x=2π+4πn​​,x=−2π+4πn​​
x2=2π​+2πn
For x2=f(a) the solutions are x=f(a)​,−f(a)​
x=2π​+2πn​,x=−2π​+2πn​
Simplify 2π​+2πn​:2π+4πn​​
2π​+2πn​
Join 2π​+2πn:2π+4πn​
2π​+2πn
Convert element to fraction: 2πn=22πn2​=2π​+22πn⋅2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2π+2πn⋅2​
Multiply the numbers: 2⋅2=4=2π+4πn​
=2π+4πn​​
Simplify −2π​+2πn​:−2π+4πn​​
−2π​+2πn​
Join 2π​+2πn:2π+4πn​
2π​+2πn
Convert element to fraction: 2πn=22πn2​=2π​+22πn⋅2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2π+2πn⋅2​
Multiply the numbers: 2⋅2=4=2π+4πn​
=−2π+4πn​​
x=2π+4πn​​,x=−2π+4πn​​
Solve x2=23π​+2πn:x=23π+4πn​​,x=−23π+4πn​​
x2=23π​+2πn
For x2=f(a) the solutions are x=f(a)​,−f(a)​
x=23π​+2πn​,x=−23π​+2πn​
Simplify 23π​+2πn​:23π+4πn​​
23π​+2πn​
Join 23π​+2πn:23π+4πn​
23π​+2πn
Convert element to fraction: 2πn=22πn2​=23π​+22πn⋅2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=23π+2πn⋅2​
Multiply the numbers: 2⋅2=4=23π+4πn​
=23π+4πn​​
Simplify −23π​+2πn​:−23π+4πn​​
−23π​+2πn​
Join 23π​+2πn:23π+4πn​
23π​+2πn
Convert element to fraction: 2πn=22πn2​=23π​+22πn⋅2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=23π+2πn⋅2​
Multiply the numbers: 2⋅2=4=23π+4πn​
=−23π+4πn​​
x=23π+4πn​​,x=−23π+4πn​​
x=2π+4πn​​,x=−2π+4πn​​,x=23π+4πn​​,x=−23π+4πn​​
Solutions for the range 0≤x<2πx=2π​​,x=23π​​,x=25π​​,x=27π​​,x=2​3π​​,x=211π​​,x=213π​​,x=215π​​,x=217π​​,x=219π​​
3π​​,2π​​,23π​​,35π​​,37π​​,25π​​,27π​​,311π​​,313π​​,2​3π​​,211π​​,317π​​,319π​​,213π​​,215π​​,323π​​,3​5π​​,217π​​,219π​​,329π​​
Identify the intervals0<x<3π​​,3π​​<x<2π​​,2π​​<x<23π​​,23π​​<x<35π​​,35π​​<x<37π​​,37π​​<x<25π​​,25π​​<x<27π​​,27π​​<x<311π​​,311π​​<x<313π​​,313π​​<x<2​3π​​,2​3π​​<x<211π​​,211π​​<x<317π​​,317π​​<x<319π​​,319π​​<x<213π​​,213π​​<x<215π​​,215π​​<x<323π​​,323π​​<x<3​5π​​,3​5π​​<x<217π​​,217π​​<x<219π​​,219π​​<x<329π​​,329π​​<x<2π
Summarize in a table:2cos(x2)−1cos(x2)cos(x2)2cos(x2)−1​​x=0+++​0<x<3π​​+++​x=3π​​0+0​3π​​<x<2π​​−+−​x=2π​​−0Undefined​2π​​<x<23π​​−−+​x=23π​​−0Undefined​23π​​<x<35π​​−+−​x=35π​​0+0​35π​​<x<37π​​+++​x=37π​​0+0​37π​​<x<25π​​−+−​x=25π​​−0Undefined​25π​​<x<27π​​−−+​x=27π​​−0Undefined​27π​​<x<311π​​−+−​x=311π​​0+0​311π​​<x<313π​​+++​x=313π​​0+0​313π​​<x<2​3π​​−+−​x=2​3π​​−0Undefined​2​3π​​<x<211π​​−−+​x=211π​​−0Undefined​211π​​<x<317π​​−+−​x=317π​​0+0​317π​​<x<319π​​+++​x=319π​​0+0​319π​​<x<213π​​−+−​x=213π​​−0Undefined​213π​​<x<215π​​−−+​x=215π​​−0Undefined​215π​​<x<323π​​−+−​x=323π​​0+0​323π​​<x<3​5π​​+++​x=3​5π​​0+0​3​5π​​<x<217π​​−+−​x=217π​​−0Undefined​217π​​<x<219π​​−−+​x=219π​​−0Undefined​219π​​<x<329π​​−+−​x=329π​​0+0​329π​​<x<2π−−+​x=2π−−+​​
Identify the intervals that satisfy the required condition: >0x=0or0<x<3π​​or2π​​<x<23π​​or35π​​<x<37π​​or25π​​<x<27π​​or311π​​<x<313π​​or2​3π​​<x<211π​​or317π​​<x<319π​​or213π​​<x<215π​​or323π​​<x<3​5π​​or217π​​<x<219π​​or329π​​<x<2πorx=2π
Merge Overlapping Intervals
0≤x<3π​​or2π​​<x<23π​​or35π​​<x<37π​​or25π​​<x<27π​​or311π​​<x<313π​​or2​3π​​<x<211π​​or317π​​<x<319π​​or213π​​<x<215π​​or323π​​<x<3​5π​​or217π​​<x<219π​​or329π​​<x<2πorx=2π
The union of two intervals is the set of numbers which are in either interval
x=0or0<x<3π​​
0≤x<3π​​
The union of two intervals is the set of numbers which are in either interval
0≤x<3π​​or2π​​<x<23π​​
0≤x<3π​​or2π​​<x<23π​​
The union of two intervals is the set of numbers which are in either interval
0≤x<3π​​or2π​​<x<23π​​or35π​​<x<37π​​
0≤x<3π​​or2π​​<x<23π​​or35π​​<x<37π​​
The union of two intervals is the set of numbers which are in either interval
0≤x<3π​​or2π​​<x<23π​​or35π​​<x<37π​​or25π​​<x<27π​​
0≤x<3π​​or2π​​<x<23π​​or35π​​<x<37π​​or25π​​<x<27π​​
The union of two intervals is the set of numbers which are in either interval
0≤x<3π​​or2π​​<x<23π​​or35π​​<x<37π​​or25π​​<x<27π​​or311π​​<x<313π​​
0≤x<3π​​or2π​​<x<23π​​or35π​​<x<37π​​or25π​​<x<27π​​or311π​​<x<313π​​
The union of two intervals is the set of numbers which are in either interval
0≤x<3π​​or2π​​<x<23π​​or35π​​<x<37π​​or25π​​<x<27π​​or311π​​<x<313π​​or2​3π​​<x<211π​​
0≤x<3π​​or2π​​<x<23π​​or35π​​<x<37π​​or25π​​<x<27π​​or311π​​<x<313π​​or2​3π​​<x<211π​​
The union of two intervals is the set of numbers which are in either interval
0≤x<3π​​or2π​​<x<23π​​or35π​​<x<37π​​or25π​​<x<27π​​or311π​​<x<313π​​or2​3π​​<x<211π​​or317π​​<x<319π​​
0≤x<3π​​or2π​​<x<23π​​or35π​​<x<37π​​or25π​​<x<27π​​or311π​​<x<313π​​or2​3π​​<x<211π​​or317π​​<x<319π​​
The union of two intervals is the set of numbers which are in either interval
0≤x<3π​​or2π​​<x<23π​​or35π​​<x<37π​​or25π​​<x<27π​​or311π​​<x<313π​​or2​3π​​<x<211π​​or317π​​<x<319π​​or213π​​<x<215π​​
0≤x<3π​​or2π​​<x<23π​​or35π​​<x<37π​​or25π​​<x<27π​​or311π​​<x<313π​​or2​3π​​<x<211π​​or317π​​<x<319π​​or213π​​<x<215π​​
The union of two intervals is the set of numbers which are in either interval
0≤x<3π​​or2π​​<x<23π​​or35π​​<x<37π​​or25π​​<x<27π​​or311π​​<x<313π​​or2​3π​​<x<211π​​or317π​​<x<319π​​or213π​​<x<215π​​or323π​​<x<3​5π​​
0≤x<3π​​or2π​​<x<23π​​or35π​​<x<37π​​or25π​​<x<27π​​or311π​​<x<313π​​or2​3π​​<x<211π​​or317π​​<x<319π​​or213π​​<x<215π​​or323π​​<x<3​5π​​
The union of two intervals is the set of numbers which are in either interval
0≤x<3π​​or2π​​<x<23π​​or35π​​<x<37π​​or25π​​<x<27π​​or311π​​<x<313π​​or2​3π​​<x<211π​​or317π​​<x<319π​​or213π​​<x<215π​​or323π​​<x<3​5π​​or217π​​<x<219π​​
0≤x<3π​​or2π​​<x<23π​​or35π​​<x<37π​​or25π​​<x<27π​​or311π​​<x<313π​​or2​3π​​<x<211π​​or317π​​<x<319π​​or213π​​<x<215π​​or323π​​<x<3​5π​​or217π​​<x<219π​​
The union of two intervals is the set of numbers which are in either interval
0≤x<3π​​or2π​​<x<23π​​or35π​​<x<37π​​or25π​​<x<27π​​or311π​​<x<313π​​or2​3π​​<x<211π​​or317π​​<x<319π​​or213π​​<x<215π​​or323π​​<x<3​5π​​or217π​​<x<219π​​or329π​​<x<2π
0≤x<3π​​or2π​​<x<23π​​or35π​​<x<37π​​or25π​​<x<27π​​or311π​​<x<313π​​or2​3π​​<x<211π​​or317π​​<x<319π​​or213π​​<x<215π​​or323π​​<x<3​5π​​or217π​​<x<219π​​or329π​​<x<2π
The union of two intervals is the set of numbers which are in either interval
0≤x<3π​​or2π​​<x<23π​​or35π​​<x<37π​​or25π​​<x<27π​​or311π​​<x<313π​​or2​3π​​<x<211π​​or317π​​<x<319π​​or213π​​<x<215π​​or323π​​<x<3​5π​​or217π​​<x<219π​​or329π​​<x<2πorx=2π
0≤x<3π​​or2π​​<x<23π​​or35π​​<x<37π​​or25π​​<x<27π​​or311π​​<x<313π​​or2​3π​​<x<211π​​or317π​​<x<319π​​or213π​​<x<215π​​or323π​​<x<3​5π​​or217π​​<x<219π​​or329π​​<x≤2π
0≤x<3π​​or2π​​<x<23π​​or35π​​<x<37π​​or25π​​<x<27π​​or311π​​<x<313π​​or2​3π​​<x<211π​​or317π​​<x<319π​​or213π​​<x<215π​​or323π​​<x<3​5π​​or217π​​<x<219π​​or329π​​<x≤2π
Apply the periodicity of 2−sec(x2)2πn≤x<3π​​+2πnor2π​​+2πn<x<23π​​+2πnor35π​​+2πn<x<37π​​+2πnor25π​​+2πn<x<27π​​+2πnor311π​​+2πn<x<313π​​+2πnor2​3π​​+2πn<x<211π​​+2πnor317π​​+2πn<x<319π​​+2πnor213π​​+2πn<x<215π​​+2πnor323π​​+2πn<x<3​5π​​+2πnor217π​​+2πn<x<219π​​+2πnor329π​​+2πn<x≤2π+2πn

Popular Examples

-0.25<= 0.5sin(2x),0<= x<= 360−0.25≤0.5sin(2x),0∘≤x≤360∘cos(x/2)>= (sqrt(2))/2cos(2x​)≥22​​cos^2(x)>-2cos2(x)>−2-cos(x)-4sin(2x)>0−cos(x)−4sin(2x)>0(1+tan(x))/(1-tan(x))>01−tan(x)1+tan(x)​>0
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024