Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(x)-1/2 cos(2x)<0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(x)−21​cos(2x)<0

Solution

arccos(2−3​+1​)+2πn<x<2π−arccos(2−3​+1​)+2πn
+2
Interval Notation
(arccos(2−3​+1​)+2πn,2π−arccos(2−3​+1​)+2πn)
Decimal
1.94553…+2πn<x<4.33765…+2πn
Solution steps
cos(x)−21​cos(2x)<0
Use the following identity: cos(2x)=−1+2cos2(x)cos(x)−(−1+2cos2(x))21​<0
Simplify cos(x)−(−1+2cos2(x))21​:cos(x)+21​−cos2(x)
cos(x)−(−1+2cos2(x))21​
=cos(x)−21​(−1+2cos2(x))
Expand −21​(−1+2cos2(x)):21​−cos2(x)
−21​(−1+2cos2(x))
Apply the distributive law: a(b+c)=ab+aca=−21​,b=−1,c=2cos2(x)=−21​(−1)+(−21​)⋅2cos2(x)
Apply minus-plus rules−(−a)=a,+(−a)=−a=1⋅21​−2⋅21​cos2(x)
Simplify 1⋅21​−2⋅21​cos2(x):21​−cos2(x)
1⋅21​−2⋅21​cos2(x)
1⋅21​=21​
1⋅21​
Multiply: 1⋅21​=21​=21​
2⋅21​cos2(x)=cos2(x)
2⋅21​cos2(x)
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​cos2(x)
Cancel the common factor: 2=cos2(x)⋅1
Multiply: cos2(x)⋅1=cos2(x)=cos2(x)
=21​−cos2(x)
=21​−cos2(x)
=cos(x)+21​−cos2(x)
cos(x)+21​−cos2(x)<0
Let: u=cos(x)u+21​−u2<0
u+21​−u2<0:u<2−3​+1​oru>23​+1​
u+21​−u2<0
Rewrite in standard form
u+21​−u2<0
Multiply both sides by 2u⋅2+21​⋅2−u2⋅2<0⋅2
2u+1−2u2<0
2u+1−2u2<0
Complete the square 2u+1−2u2:−2(u−21​)2+23​
2u+1−2u2
Write in the standard form ax2+bx+c−2u2+2u+1
Write −2u2+2u+1in the form: x2+2ax+a2Factor out −2−2(u2−u−21​)
2a=−1:a=−21​
2a=−1
Divide both sides by 2
2a=−1
Divide both sides by 222a​=2−1​
Simplifya=−21​
a=−21​
Add and subtract (−21​)2−2(u2−u−21​+(−21​)2−(−21​)2)
x2+2ax+a2=(x+a)2u2−1u+(−21​)2=(u−21​)2−2((u−21​)2−21​−(−21​)2)
Simplify−2(u−21​)2+23​
−2(u−21​)2+23​<0
Move 23​to the right side
−2(u−21​)2+23​<0
Subtract 23​ from both sides−2(u−21​)2+23​−23​<0−23​
Simplify−2(u−21​)2<−23​
−2(u−21​)2<−23​
Multiply both sides by −1
−2(u−21​)2<−23​
Multiply both sides by -1 (reverse the inequality)(−2(u−21​)2)(−1)>(−23​)(−1)
Simplify2(u−21​)2>23​
2(u−21​)2>23​
Divide both sides by 2
2(u−21​)2>23​
Divide both sides by 222(u−21​)2​>223​​
Simplify
22(u−21​)2​>223​​
Simplify 22(u−21​)2​:(u−21​)2
22(u−21​)2​
Divide the numbers: 22​=1=(u−21​)2
Simplify 223​​:43​
223​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅23​
Multiply the numbers: 2⋅2=4=43​
(u−21​)2>43​
(u−21​)2>43​
(u−21​)2>43​
For un>a, if nis even then u<−na​oru>na​
u−21​<−43​​oru−21​>43​​
u−21​<−43​​:u<2−3​+1​
u−21​<−43​​
Simplify 43​​:23​​
43​​
Apply radical rule: nba​​=nb​na​​, assuming a≥0,b≥0=4​3​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: nan​=a22​=2=2
=23​​
u−21​<−23​​
Move 21​to the right side
u−21​<−23​​
Add 21​ to both sidesu−21​+21​<−23​​+21​
Simplify
u−21​+21​<−23​​+21​
Simplify u−21​+21​:u
u−21​+21​
Add similar elements: −21​+21​<0
=u
Simplify −23​​+21​:2−3​+1​
−23​​+21​
Apply rule ca​±cb​=ca±b​=2−3​+1​
u<2−3​+1​
u<2−3​+1​
u<2−3​+1​
u−21​>43​​:u>23​+1​
u−21​>43​​
Apply radical rule: nba​​=nb​na​​, assuming a≥0,b≥0u−21​>4​3​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: nan​=a22​=2=2
u−21​>23​​
Move 21​to the right side
u−21​>23​​
Add 21​ to both sidesu−21​+21​>23​​+21​
Simplify
u−21​+21​>23​​+21​
Simplify u−21​+21​:u
u−21​+21​
Add similar elements: −21​+21​>0
=u
Simplify 23​​+21​:23​+1​
23​​+21​
Apply rule ca​±cb​=ca±b​=23​+1​
u>23​+1​
u>23​+1​
u>23​+1​
Combine the intervalsu<2−3​+1​oru>23​+1​
u<2−3​+1​oru>23​+1​
Substitute back u=cos(x)cos(x)<2−3​+1​orcos(x)>23​+1​
cos(x)<2−3​+1​:arccos(2−3​+1​)+2πn<x<2π−arccos(2−3​+1​)+2πn
cos(x)<2−3​+1​
For cos(x)<a, if −1<a≤1 then arccos(a)+2πn<x<2π−arccos(a)+2πnarccos(2−3​+1​)+2πn<x<2π−arccos(2−3​+1​)+2πn
cos(x)>23​+1​:False for all x∈R
cos(x)>23​+1​
Range of cos(x):−1≤cos(x)≤1
Function range definition
The range of the basic cosfunction is −1≤cos(x)≤1−1≤cos(x)≤1
cos(x)>23​+1​and−1≤cos(x)≤1:False
Let y=cos(x)
Combine the intervalsy>23​+1​and−1≤y≤1
Merge Overlapping Intervals
y>23​+1​and−1≤y≤1
The intersection of two intervals is the set of numbers which are in both intervals
y>23​+1​and−1≤y≤1
Falseforally∈R
Falseforally∈R
NoSolutionforx∈R
Falseforallx∈R
Combine the intervalsarccos(2−3​+1​)+2πn<x<2π−arccos(2−3​+1​)+2πnorFalseforallx∈R
Merge Overlapping Intervalsarccos(2−3​+1​)+2πn<x<2π−arccos(2−3​+1​)+2πn

Popular Examples

cot(θ)<sqrt(3)cot(θ)<3​cos(2x)<= sin(x)cos(2x)≤sin(x)sin(x)cos(2x)>= 0sin(x)cos(2x)≥0cos(x)-1/2 cos(2x)>0cos(x)−21​cos(2x)>0sec(x)<= sqrt(2)sec(x)≤2​
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024