Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2cos^2(x)+sin(2x)<= 0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2cos2(x)+sin(2x)≤0

Solution

2π​+πn≤x≤43π​+πn
+2
Interval Notation
[2π​+πn,43π​+πn]
Decimal
1.57079…+πn≤x≤2.35619…+πn
Solution steps
2cos2(x)+sin(2x)≤0
Use the following identity: sin(2x)=2cos(x)sin(x)2cos(x)sin(x)+2cos2(x)≤0
Periodicity of 2cos(x)sin(x)+2cos2(x):π
The compound periodicity of the sum of periodic functions is the least common multiplier of the periods2cos(x)sin(x),2cos2(x)
Periodicity of 2cos(x)sin(x):π
2cos(x)sin(x)is composed of the following functions and periods:cos(x)with periodicity of 2π
The compound periodicity is:π
Periodicity of 2cos2(x):π
Periodicity of cosn(x)=2Periodicityofcos(x)​,if n is even
Periodicity of cos(x):2π
Periodicity of cos(x)is 2π=2π
22π​
Simplifyπ
Combine periods: π,π
=π
Factor 2cos(x)sin(x)+2cos2(x):2cos(x)(sin(x)+cos(x))
2cos(x)sin(x)+2cos2(x)
Apply exponent rule: ab+c=abaccos2(x)=cos(x)cos(x)=2sin(x)cos(x)+2cos(x)cos(x)
Factor out common term 2cos(x)=2cos(x)(sin(x)+cos(x))
2cos(x)(sin(x)+cos(x))≤0
To find the zeroes, set the inequality to zero2cos(x)(sin(x)+cos(x))=0
Solve 2cos(x)(sin(x)+cos(x))=0for 0≤x<π
2cos(x)(sin(x)+cos(x))=0
Solving each part separately
cos(x)=0:x=2π​
cos(x)=0,0≤x<π
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
Solutions for the range 0≤x<πx=2π​
sin(x)+cos(x)=0:x=43π​
sin(x)+cos(x)=0,0≤x<π
Rewrite using trig identities
sin(x)+cos(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)sin(x)+cos(x)​=cos(x)0​
Simplifycos(x)sin(x)​+1=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)tan(x)+1=0
tan(x)+1=0
Move 1to the right side
tan(x)+1=0
Subtract 1 from both sidestan(x)+1−1=0−1
Simplifytan(x)=−1
tan(x)=−1
General solutions for tan(x)=−1
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=43π​+πn
x=43π​+πn
Solutions for the range 0≤x<πx=43π​
Combine all the solutions2π​or43π​
The intervals between the zeros0<x<2π​,2π​<x<43π​,43π​<x<π
Summarize in a table:cos(x)sin(x)+cos(x)2cos(x)(sin(x)+cos(x))​x=0+++​0<x<2π​+++​x=2π​0+0​2π​<x<43π​−+−​x=43π​−00​43π​<x<π−−+​x=π−−+​​
Identify the intervals that satisfy the required condition: ≤0x=2π​or2π​<x<43π​orx=43π​
Merge Overlapping Intervals
2π​≤x<43π​orx=43π​
The union of two intervals is the set of numbers which are in either interval
x=2π​or2π​<x<43π​
2π​≤x<43π​
The union of two intervals is the set of numbers which are in either interval
2π​≤x<43π​orx=43π​
2π​≤x≤43π​
2π​≤x≤43π​
Apply the periodicity of 2cos(x)sin(x)+2cos2(x)2π​+πn≤x≤43π​+πn

Popular Examples

cos(2x)> 1/(sqrt(2))cos(2x)>2​1​sin(x)>= cos(x)sin(x)≥cos(x)cos(x)<(sqrt(3))/2cos(x)<23​​2sin^2(x)-5sin(x)-3>= 0,0<= x<= 2pi2sin2(x)−5sin(x)−3≥0,0≤x≤2πtan(2x)<sqrt(3)tan(2x)<3​
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024