Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

4cos(x/3+pi/4)+sqrt(12)>= 0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

4cos(3x​+4π​)+12​≥0

Solution

−413π​+6πn≤x≤47π​+6πn
+2
Interval Notation
[−413π​+6πn,47π​+6πn]
Decimal
−10.21017…+6πn≤x≤5.49778…+6πn
Solution steps
4cos(3x​+4π​)+12​≥0
12​=23​
12​
Prime factorization of 12:22⋅3
12
12divides by 212=6⋅2=2⋅6
6divides by 26=3⋅2=2⋅2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3
=22⋅3
=22⋅3​
Apply radical rule: nab​=na​nb​=3​22​
Apply radical rule: nan​=a22​=2=23​
4cos(3x​+4π​)+23​≥0
Move 23​to the right side
4cos(3x​+4π​)+23​≥0
Subtract 23​ from both sides4cos(3x​+4π​)+23​−23​≥0−23​
Simplify4cos(3x​+4π​)≥−23​
4cos(3x​+4π​)≥−23​
Divide both sides by 4
4cos(3x​+4π​)≥−23​
Divide both sides by 444cos(3x​+4π​)​≥4−23​​
Simplify
44cos(3x​+4π​)​≥4−23​​
Simplify 44cos(3x​+4π​)​:cos(3x​+4π​)
44cos(3x​+4π​)​
Divide the numbers: 44​=1=cos(3x​+4π​)
Simplify 4−23​​:−23​​
4−23​​
Apply the fraction rule: b−a​=−ba​=−423​​
Cancel the common factor: 2=−23​​
cos(3x​+4π​)≥−23​​
cos(3x​+4π​)≥−23​​
cos(3x​+4π​)≥−23​​
For cos(x)≥a, if −1<a<1 then −arccos(a)+2πn≤x≤arccos(a)+2πn−arccos(−23​​)+2πn≤(3x​+4π​)≤arccos(−23​​)+2πn
If a≤u≤bthen a≤uandu≤b−arccos(−23​​)+2πn≤3x​+4π​and3x​+4π​≤arccos(−23​​)+2πn
−arccos(−23​​)+2πn≤3x​+4π​:x≥6πn−413π​
−arccos(−23​​)+2πn≤3x​+4π​
Switch sides3x​+4π​≥−arccos(−23​​)+2πn
Simplify −arccos(−23​​)+2πn:−65π​+2πn
−arccos(−23​​)+2πn
Use the following trivial identity:arccos(−23​​)=65π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=−65π​+2πn
3x​+4π​≥−65π​+2πn
Move 4π​to the right side
3x​+4π​≥−65π​+2πn
Subtract 4π​ from both sides3x​+4π​−4π​≥−65π​+2πn−4π​
Simplify
3x​+4π​−4π​≥−65π​+2πn−4π​
Simplify 3x​+4π​−4π​:3x​
3x​+4π​−4π​
Add similar elements: 4π​−4π​≥0
=3x​
Simplify −65π​+2πn−4π​:2πn−1213π​
−65π​+2πn−4π​
Group like terms=2πn−4π​−65π​
Least Common Multiplier of 4,6:12
4,6
Least Common Multiplier (LCM)
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Multiply each factor the greatest number of times it occurs in either 4 or 6=2⋅2⋅3
Multiply the numbers: 2⋅2⋅3=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 4π​:multiply the denominator and numerator by 34π​=4⋅3π3​=12π3​
For 65π​:multiply the denominator and numerator by 265π​=6⋅25π2​=1210π​
=−12π3​−1210π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12−π3−10π​
Add similar elements: −3π−10π=−13π=12−13π​
Apply the fraction rule: b−a​=−ba​=2πn−1213π​
3x​≥2πn−1213π​
3x​≥2πn−1213π​
3x​≥2πn−1213π​
Multiply both sides by 3
3x​≥2πn−1213π​
Multiply both sides by 333x​≥3⋅2πn−3⋅1213π​
Simplify
33x​≥3⋅2πn−3⋅1213π​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 3⋅2πn−3⋅1213π​:6πn−413π​
3⋅2πn−3⋅1213π​
3⋅2πn=6πn
3⋅2πn
Multiply the numbers: 3⋅2=6=6πn
3⋅1213π​=413π​
3⋅1213π​
Multiply fractions: a⋅cb​=ca⋅b​=1213π3​
Multiply the numbers: 13⋅3=39=1239π​
Cancel the common factor: 3=413π​
=6πn−413π​
x≥6πn−413π​
x≥6πn−413π​
x≥6πn−413π​
3x​+4π​≤arccos(−23​​)+2πn:x≤6πn+47π​
3x​+4π​≤arccos(−23​​)+2πn
Simplify arccos(−23​​)+2πn:65π​+2πn
arccos(−23​​)+2πn
Use the following trivial identity:arccos(−23​​)=65π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=65π​+2πn
3x​+4π​≤65π​+2πn
Move 4π​to the right side
3x​+4π​≤65π​+2πn
Subtract 4π​ from both sides3x​+4π​−4π​≤65π​+2πn−4π​
Simplify
3x​+4π​−4π​≤65π​+2πn−4π​
Simplify 3x​+4π​−4π​:3x​
3x​+4π​−4π​
Add similar elements: 4π​−4π​≤0
=3x​
Simplify 65π​+2πn−4π​:2πn+127π​
65π​+2πn−4π​
Group like terms=2πn−4π​+65π​
Least Common Multiplier of 4,6:12
4,6
Least Common Multiplier (LCM)
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Multiply each factor the greatest number of times it occurs in either 4 or 6=2⋅2⋅3
Multiply the numbers: 2⋅2⋅3=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 4π​:multiply the denominator and numerator by 34π​=4⋅3π3​=12π3​
For 65π​:multiply the denominator and numerator by 265π​=6⋅25π2​=1210π​
=−12π3​+1210π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12−π3+10π​
Add similar elements: −3π+10π=7π=2πn+127π​
3x​≤2πn+127π​
3x​≤2πn+127π​
3x​≤2πn+127π​
Multiply both sides by 3
3x​≤2πn+127π​
Multiply both sides by 333x​≤3⋅2πn+3⋅127π​
Simplify
33x​≤3⋅2πn+3⋅127π​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 3⋅2πn+3⋅127π​:6πn+47π​
3⋅2πn+3⋅127π​
3⋅2πn=6πn
3⋅2πn
Multiply the numbers: 3⋅2=6=6πn
3⋅127π​=47π​
3⋅127π​
Multiply fractions: a⋅cb​=ca⋅b​=127π3​
Multiply the numbers: 7⋅3=21=1221π​
Cancel the common factor: 3=47π​
=6πn+47π​
x≤6πn+47π​
x≤6πn+47π​
x≤6πn+47π​
Combine the intervalsx≥6πn−413π​andx≤6πn+47π​
Merge Overlapping Intervals−413π​+6πn≤x≤47π​+6πn

Popular Examples

cos(2x)>=-(sqrt(3))/2cos(2x)≥−23​​2tan(x)<sqrt(2),0<= x<= 2pi2tan(x)<2​,0≤x≤2πcot(x)>sqrt(3)cot(x)>3​cos^2(x)> 1/4cos2(x)>41​cos^2(x)>= 0cos2(x)≥0
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024