Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

prove sin(67)=sin(42)cos(25)+cos(42)sin(25)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

prove sin(67∘)=sin(42∘)cos(25∘)+cos(42∘)sin(25∘)

Solution

True
Solution steps
sin(67∘)=sin(42∘)cos(25∘)+cos(42∘)sin(25∘)
Manipulating right sidesin(42∘)cos(25∘)+cos(42∘)sin(25∘)
Rewrite using trig identities
sin(42∘)cos(25∘)+cos(42∘)sin(25∘)
Use the Angle Sum identity: sin(s)cos(t)+cos(s)sin(t)=sin(s+t)=sin(42∘+25∘)
Join 42∘+25∘:67∘
42∘+25∘
Least Common Multiplier of 30,36:180
30,36
Least Common Multiplier (LCM)
Prime factorization of 30:2⋅3⋅5
30
30divides by 230=15⋅2=2⋅15
15divides by 315=5⋅3=2⋅3⋅5
2,3,5 are all prime numbers, therefore no further factorization is possible=2⋅3⋅5
Prime factorization of 36:2⋅2⋅3⋅3
36
36divides by 236=18⋅2=2⋅18
18divides by 218=9⋅2=2⋅2⋅9
9divides by 39=3⋅3=2⋅2⋅3⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3⋅3
Multiply each factor the greatest number of times it occurs in either 30 or 36=2⋅2⋅3⋅3⋅5
Multiply the numbers: 2⋅2⋅3⋅3⋅5=180=180
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 180
For 42∘:multiply the denominator and numerator by 642∘=30⋅61260∘6​=42∘
For 25∘:multiply the denominator and numerator by 525∘=36⋅5900∘5​=25∘
=42∘+25∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=1807560∘+4500∘​
Add similar elements: 7560∘+4500∘=12060∘=67∘
=sin(67∘)
=sin(67∘)
We showed that the two sides could take the same form⇒True

Popular Examples

prove cos(90+30)=cos(120)provecos(90∘+30∘)=cos(120∘)prove 1-sin(x)=cos^2(x)prove1−sin(x)=cos2(x)prove 1+cos(2x)+2sin^{(2)}(x)=2prove1+cos(2x)+2sin(2)(x)=2prove 1/(1+sin(x))+1/(1+csc(x))=1prove1+sin(x)1​+1+csc(x)1​=1prove sin^2(θ)cos^2(θ)=1provesin2(θ)cos2(θ)=1

Frequently Asked Questions (FAQ)

  • Is sin(67)=sin(42)cos(25)+cos(42)sin(25) ?

    The answer to whether sin(67)=sin(42)cos(25)+cos(42)sin(25) is True
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024