Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

prove cot((5pi)/(12))=2-sqrt(3)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

prove cot(125π​)=2−3​

Solution

True
Solution steps
cot(125π​)=2−3​
Manipulating left sidecot(125π​)
Simplify cot(125π​):2−3​
cot(125π​)
Rewrite using trig identities:tan(125π​)1​
cot(125π​)
Use the basic trigonometric identity: cot(x)=tan(x)1​=tan(125π​)1​
=tan(125π​)1​
Rewrite using trig identities:tan(125π​)=2+3​
tan(125π​)
Rewrite using trig identities:1−tan(4π​)tan(6π​)tan(4π​)+tan(6π​)​
tan(125π​)
Write tan(125π​)as tan(4π​+6π​)=tan(4π​+6π​)
Use the Angle Sum identity: tan(s+t)=1−tan(s)tan(t)tan(s)+tan(t)​=1−tan(4π​)tan(6π​)tan(4π​)+tan(6π​)​
=1−tan(4π​)tan(6π​)tan(4π​)+tan(6π​)​
Use the following trivial identity:tan(4π​)=1
tan(4π​)
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
=1
Use the following trivial identity:tan(6π​)=33​​
tan(6π​)
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
=33​​
=1−1⋅33​​1+33​​​
Simplify 1−1⋅33​​1+33​​​:2+3​
1−1⋅33​​1+33​​​
Multiply: 1⋅33​​=33​​=1−33​​1+33​​​
Join 1−33​​:3​3​−1​
1−33​​
Convert element to fraction: 1=31⋅3​=31⋅3​−33​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=31⋅3−3​​
Multiply the numbers: 1⋅3=3=33−3​​
Factor 3−3​:3​(3​−1)
3−3​
3=3​3​=3​3​−3​
Factor out common term 3​=3​(3​−1)
=33​(3​−1)​
Cancel 33​(3​−1)​:3​3​−1​
33​(3​−1)​
Apply radical rule: na​=an1​3​=321​=3321​(3​−1)​
Apply exponent rule: xbxa​=xb−a1​31321​​=31−21​1​=31−21​3​−1​
Subtract the numbers: 1−21​=21​=321​3​−1​
Apply radical rule: an1​=na​321​=3​=3​3​−1​
=3​3​−1​
=3​3​−1​1+33​​​
Join 1+33​​:3​3​+1​
1+33​​
Convert element to fraction: 1=31⋅3​=31⋅3​+33​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=31⋅3+3​​
Multiply the numbers: 1⋅3=3=33+3​​
Factor 3+3​:3​(3​+1)
3+3​
3=3​3​=3​3​+3​
Factor out common term 3​=3​(3​+1)
=33​(3​+1)​
Cancel 33​(3​+1)​:3​3​+1​
33​(3​+1)​
Apply radical rule: na​=an1​3​=321​=3321​(1+3​)​
Apply exponent rule: xbxa​=xb−a1​31321​​=31−21​1​=31−21​3​+1​
Subtract the numbers: 1−21​=21​=321​3​+1​
Apply radical rule: an1​=na​321​=3​=3​3​+1​
=3​3​+1​
=3​3​−1​3​3​+1​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=3​(3​−1)(3​+1)3​​
Cancel the common factor: 3​=3​−13​+1​
Rationalize 3​−13​+1​:2+3​
3​−13​+1​
Multiply by the conjugate 3​+13​+1​=(3​−1)(3​+1)(3​+1)(3​+1)​
(3​+1)(3​+1)=4+23​
(3​+1)(3​+1)
Apply exponent rule: ab⋅ac=ab+c(3​+1)(3​+1)=(3​+1)1+1=(3​+1)1+1
Add the numbers: 1+1=2=(3​+1)2
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=3​,b=1
=(3​)2+23​⋅1+12
Simplify (3​)2+23​⋅1+12:4+23​
(3​)2+23​⋅1+12
Apply rule 1a=112=1=(3​)2+2⋅1⋅3​+1
(3​)2=3
(3​)2
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
23​⋅1=23​
23​⋅1
Multiply the numbers: 2⋅1=2=23​
=3+23​+1
Add the numbers: 3+1=4=4+23​
=4+23​
(3​−1)(3​+1)=2
(3​−1)(3​+1)
Apply Difference of Two Squares Formula: (a−b)(a+b)=a2−b2a=3​,b=1=(3​)2−12
Simplify (3​)2−12:2
(3​)2−12
Apply rule 1a=112=1=(3​)2−1
(3​)2=3
(3​)2
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=3−1
Subtract the numbers: 3−1=2=2
=2
=24+23​​
Factor 4+23​:2(2+3​)
4+23​
Rewrite as=2⋅2+23​
Factor out common term 2=2(2+3​)
=22(2+3​)​
Divide the numbers: 22​=1=2+3​
=2+3​
=2+3​
=2+3​1​
Simplify 2+3​1​:2−3​
2+3​1​
Multiply by the conjugate 2−3​2−3​​=(2+3​)(2−3​)1⋅(2−3​)​
1⋅(2−3​)=2−3​
(2+3​)(2−3​)=1
(2+3​)(2−3​)
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=2,b=3​=22−(3​)2
Simplify 22−(3​)2:1
22−(3​)2
22=4
22
22=4=4
(3​)2=3
(3​)2
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=4−3
Subtract the numbers: 4−3=1=1
=1
=12−3​​
Apply rule 1a​=a=2−3​
=2−3​
=2−3​
We showed that the two sides could take the same form⇒True

Popular Examples

prove cos(4x)=cos^2(2x)-sin^2(2x)provecos(4x)=cos2(2x)−sin2(2x)prove (cos^3(t))/(cot^2(t))=sin^2(t)cos(t)provecot2(t)cos3(t)​=sin2(t)cos(t)prove cos(a+b)cos(a-b)=cos^2(a)-cos^2(b)provecos(a+b)cos(a−b)=cos2(a)−cos2(b)prove tan(x)sin(2x)=2sin^2(x)provetan(x)sin(2x)=2sin2(x)prove cot(x)tan(x)-(sin^2(x)+cos^2(x))=0provecot(x)tan(x)−(sin2(x)+cos2(x))=0

Frequently Asked Questions (FAQ)

  • Is cot((5pi)/(12))=2-sqrt(3) ?

    The answer to whether cot((5pi)/(12))=2-sqrt(3) is True
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024