Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

prove (cot(θ)-csc(θ))/(cot(θ)+csc(θ))=(1-2cos(θ)+cos^2(θ))/(-sin^2(θ))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

prove cot(θ)+csc(θ)cot(θ)−csc(θ)​=−sin2(θ)1−2cos(θ)+cos2(θ)​

Solution

True
Solution steps
cot(θ)+csc(θ)cot(θ)−csc(θ)​=−sin2(θ)1−2cos(θ)+cos2(θ)​
Manipulating left sidecot(θ)+csc(θ)cot(θ)−csc(θ)​
Express with sin, cos
cot(θ)+csc(θ)cot(θ)−csc(θ)​
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=sin(θ)cos(θ)​+csc(θ)sin(θ)cos(θ)​−csc(θ)​
Use the basic trigonometric identity: csc(x)=sin(x)1​=sin(θ)cos(θ)​+sin(θ)1​sin(θ)cos(θ)​−sin(θ)1​​
Simplify sin(θ)cos(θ)​+sin(θ)1​sin(θ)cos(θ)​−sin(θ)1​​:cos(θ)+1cos(θ)−1​
sin(θ)cos(θ)​+sin(θ)1​sin(θ)cos(θ)​−sin(θ)1​​
Combine the fractions sin(θ)cos(θ)​+sin(θ)1​:sin(θ)cos(θ)+1​
Apply rule ca​±cb​=ca±b​=sin(θ)cos(θ)+1​
=sin(θ)cos(θ)+1​sin(θ)cos(θ)​−sin(θ)1​​
Combine the fractions sin(θ)cos(θ)​−sin(θ)1​:sin(θ)cos(θ)−1​
Apply rule ca​±cb​=ca±b​=sin(θ)cos(θ)−1​
=sin(θ)cos(θ)+1​sin(θ)cos(θ)−1​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=sin(θ)(cos(θ)+1)(cos(θ)−1)sin(θ)​
Cancel the common factor: sin(θ)=cos(θ)+1cos(θ)−1​
=cos(θ)+1cos(θ)−1​
=1+cos(θ)−1+cos(θ)​
Manipulating right side−sin2(θ)1−2cos(θ)+cos2(θ)​
Rewrite using trig identities
−sin2(θ)1−2cos(θ)+cos2(θ)​
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−(1−cos2(θ))1−2cos(θ)+cos2(θ)​
Simplify −(1−cos2(θ))1−2cos(θ)+cos2(θ)​:cos(θ)+1cos(θ)−1​
−(1−cos2(θ))1−2cos(θ)+cos2(θ)​
Apply the fraction rule: −ba​=−ba​=−(1−cos2(θ))1−2cos(θ)+cos2(θ)​
Remove parentheses: (a)=a=−1−cos2(θ)1−2cos(θ)+cos2(θ)​
Cancel 1−cos2(θ)1−2cos(θ)+cos2(θ)​:−cos(θ)+1cos(θ)−1​
1−cos2(θ)1−2cos(θ)+cos2(θ)​
Factor 1−2cos(θ)+cos2(θ):(cos(θ)−1)2
1−2cos(θ)+cos2(θ)
Write in the standard form ax2+bx+c=cos2(θ)−2cos(θ)+1
Rewrite cos2(θ)−2cos(θ)+1 as cos2(θ)−2cos(θ)⋅1+12
cos2(θ)−2cos(θ)+1
Rewrite 1 as 12=cos2(θ)−2cos(θ)+12
Rewrite 2cos(θ) as 2cos(θ)⋅1=cos2(θ)−2cos(θ)⋅1+12
=cos2(θ)−2cos(θ)⋅1+12
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=cos(θ),b=1=(cos(θ)−1)2
=1−cos2(θ)(cos(θ)−1)2​
Factor 1−cos2(θ):−(cos(θ)+1)(cos(θ)−1)
1−cos2(θ)
Factor out common term −1=−(cos2(θ)−1)
Factor cos2(θ)−1:(cos(θ)+1)(cos(θ)−1)
cos2(θ)−1
Rewrite 1 as 12=cos2(θ)−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)cos2(θ)−12=(cos(θ)+1)(cos(θ)−1)=(cos(θ)+1)(cos(θ)−1)
=−(cos(θ)+1)(cos(θ)−1)
=−(cos(θ)+1)(cos(θ)−1)(cos(θ)−1)2​
Cancel the common factor: cos(θ)−1=−cos(θ)+1cos(θ)−1​
=−(−cos(θ)+1cos(θ)−1​)
Apply rule −(−a)=a=cos(θ)+1cos(θ)−1​
=cos(θ)+1cos(θ)−1​
=cos(θ)+1cos(θ)−1​
We showed that the two sides could take the same form⇒True

Popular Examples

prove sin^2(θ/2)=(csc(θ)-cot(θ))/(2csc(θ))provesin2(2θ​)=2csc(θ)csc(θ)−cot(θ)​prove cos(2x)=(cot^2(x)-1)/(cot^2(x)+1)provecos(2x)=cot2(x)+1cot2(x)−1​prove sin^2(x)-2cos^2(x)=3sin^2(x)-2provesin2(x)−2cos2(x)=3sin2(x)−2prove tan(a)=tan(a)csc^2(a)+cot(-a)provetan(a)=tan(a)csc2(a)+cot(−a)prove 7csc^2(x)-5cot^2(x)=2csc^2(x)+5prove7csc2(x)−5cot2(x)=2csc2(x)+5

Frequently Asked Questions (FAQ)

  • Is (cot(θ)-csc(θ))/(cot(θ)+csc(θ))=(1-2cos(θ)+cos^2(θ))/(-sin^2(θ)) ?

    The answer to whether (cot(θ)-csc(θ))/(cot(θ)+csc(θ))=(1-2cos(θ)+cos^2(θ))/(-sin^2(θ)) is True
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024